
Formal Methods for Software Development
Java Modeling Language, Part I

Wolfgang Ahrendt

04 October 2018

FMSD: Java Modeling Language /GU 181004 1 / 36

Role of JML in the Course

programming/modelling property/specification verification
language language technique

Promela LTL model checking

JAVA JML deductive verification

FMSD: Java Modeling Language /GU 181004 2 / 36

Unit Specifications

system level specifications
(requirements analysis, GUI, use cases)

important, but
not subject of this course

instead:

unit specification – contracts among implementers on various levels:

I application level – application level

I application level – library level

I library level – library level

FMSD: Java Modeling Language /GU 181004 3 / 36

Unit Specifications

system level specifications
(requirements analysis, GUI, use cases)

important, but
not subject of this course

instead:

unit specification – contracts among implementers on various levels:

I application level – application level

I application level – library level

I library level – library level

FMSD: Java Modeling Language /GU 181004 3 / 36

Unit Specifications

system level specifications
(requirements analysis, GUI, use cases)

important, but
not subject of this course

instead:

unit specification – contracts among implementers on various levels:

I application level – application level

I application level – library level

I library level – library level

FMSD: Java Modeling Language /GU 181004 3 / 36

Unit Specifications

In the object-oriented setting:

Units to be specified are interfaces, classes, and their methods

We start with method specifications.

Method specifications potentially refer to:

I initial values of formal parameters

I result value

I prestate and poststate

FMSD: Java Modeling Language /GU 181004 4 / 36

Unit Specifications

In the object-oriented setting:

Units to be specified are interfaces, classes, and their methods

We start with method specifications.

Method specifications potentially refer to:

I initial values of formal parameters

I result value

I prestate and poststate

FMSD: Java Modeling Language /GU 181004 4 / 36

Unit Specifications

In the object-oriented setting:

Units to be specified are interfaces, classes, and their methods

We start with method specifications.

Method specifications potentially refer to:

I initial values of formal parameters

I result value

I prestate and poststate

FMSD: Java Modeling Language /GU 181004 4 / 36

Unit Specifications

In the object-oriented setting:

Units to be specified are interfaces, classes, and their methods

We start with method specifications.

Method specifications potentially refer to:

I initial values of formal parameters

I result value

I prestate and poststate

FMSD: Java Modeling Language /GU 181004 4 / 36

Unit Specifications

In the object-oriented setting:

Units to be specified are interfaces, classes, and their methods

We start with method specifications.

Method specifications potentially refer to:

I initial values of formal parameters

I result value

I prestate and poststate

FMSD: Java Modeling Language /GU 181004 4 / 36

Specifications as Contracts

To stress the different roles – obligations – responsibilities in a
specification:

widely used analogy of the specification as a contract

“Design by Contract” methodology (Meyer, 1992, Eiffel)

Contract between caller and callee (i.e., the called method)

callee guarantees certain outcome provided caller guarantees prerequisites

FMSD: Java Modeling Language /GU 181004 5 / 36

Specifications as Contracts

To stress the different roles – obligations – responsibilities in a
specification:

widely used analogy of the specification as a contract

“Design by Contract” methodology (Meyer, 1992, Eiffel)

Contract between caller and callee (i.e., the called method)

callee guarantees certain outcome provided caller guarantees prerequisites

FMSD: Java Modeling Language /GU 181004 5 / 36

Running Example: ATM.java

public class ATM {

// fields:

private BankCard insertedCard = null;

private int wrongPINCounter = 0;

private boolean customerAuthenticated = false;

// methods:

public void insertCard (BankCard card) { ... }

public void enterPIN (int pin) { ... }

public int accountBalance () { ... }

public int withdraw (int amount) { ... }

public void ejectCard () { ... }

}

FMSD: Java Modeling Language /GU 181004 6 / 36

Informal Specification

very informal Specification of ‘enterPIN (int pin)’:

Enter the PIN that belongs to the currently inserted bank card
into the ATM. If a wrong PIN is entered three times in a row,
the card is confiscated. After having entered the correct PIN,
the customer is regarded as authenticated.

FMSD: Java Modeling Language /GU 181004 7 / 36

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter has been increased by 1,
user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

FMSD: Java Modeling Language /GU 181004 8 / 36

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter has been increased by 1,
user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

FMSD: Java Modeling Language /GU 181004 8 / 36

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter has been increased by 1,
user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

FMSD: Java Modeling Language /GU 181004 8 / 36

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter has been increased by 1,
user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

FMSD: Java Modeling Language /GU 181004 8 / 36

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter has been increased by 1,
user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

FMSD: Java Modeling Language /GU 181004 8 / 36

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter has been increased by 1,
user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

FMSD: Java Modeling Language /GU 181004 8 / 36

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter has been increased by 1,
user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

FMSD: Java Modeling Language /GU 181004 8 / 36

Meaning of Pre/Postcondition pairs

Definition

A pre/post-condition pair for a method m is
satisfied by the implementation of m if:

When m is called in any state that satisfies the precondition then
in any terminating state of m the postcondition is true.

1. No guarantees are given when the precondition is not satisfied.

2. Termination may or may not be guaranteed.

3. In case of termination, it may be normal or abrupt.

non-termination and abrupt termination ⇒ next lecture

FMSD: Java Modeling Language /GU 181004 9 / 36

Meaning of Pre/Postcondition pairs

Definition

A pre/post-condition pair for a method m is
satisfied by the implementation of m if:

When m is called in any state that satisfies the precondition then
in any terminating state of m the postcondition is true.

1. No guarantees are given when the precondition is not satisfied.

2. Termination may or may not be guaranteed.

3. In case of termination, it may be normal or abrupt.

non-termination and abrupt termination ⇒ next lecture

FMSD: Java Modeling Language /GU 181004 9 / 36

Meaning of Pre/Postcondition pairs

Definition

A pre/post-condition pair for a method m is
satisfied by the implementation of m if:

When m is called in any state that satisfies the precondition then
in any terminating state of m the postcondition is true.

1. No guarantees are given when the precondition is not satisfied.

2. Termination may or may not be guaranteed.

3. In case of termination, it may be normal or abrupt.

non-termination and abrupt termination ⇒ next lecture

FMSD: Java Modeling Language /GU 181004 9 / 36

Formal Specification

Natural language specs are very important and widely used

, we focus on

Formal Specification

Describe contracts with mathematical rigour

Motivation

I High degree of precision
I formalization often exhibits omissions/inconsistencies
I avoid ambiguities inherent to natural language

I Potential for automation of program analysis
I monitoring
I test case generation
I program verification

FMSD: Java Modeling Language /GU 181004 10 / 36

Formal Specification

Natural language specs are very important and widely used, we focus on

Formal Specification

Describe contracts with mathematical rigour

Motivation

I High degree of precision
I formalization often exhibits omissions/inconsistencies
I avoid ambiguities inherent to natural language

I Potential for automation of program analysis
I monitoring
I test case generation
I program verification

FMSD: Java Modeling Language /GU 181004 10 / 36

Formal Specification

Natural language specs are very important and widely used, we focus on

Formal Specification

Describe contracts with mathematical rigour

Motivation

I High degree of precision
I formalization often exhibits omissions/inconsistencies
I avoid ambiguities inherent to natural language

I Potential for automation of program analysis
I monitoring
I test case generation
I program verification

FMSD: Java Modeling Language /GU 181004 10 / 36

Java Modeling Language (JML)

JML is a specification language tailored to JAVA.

General JML Philosophy

Integrate

I specification

I implementation

in one single language.

⇒ JML is not external to JAVA

JML
is

JAVA + FO Logic + pre/postconditions, invariants + more. . .

FMSD: Java Modeling Language /GU 181004 11 / 36

Java Modeling Language (JML)

JML is a specification language tailored to JAVA.

General JML Philosophy

Integrate

I specification

I implementation

in one single language.

⇒ JML is not external to JAVA

JML
is

JAVA

+ FO Logic + pre/postconditions, invariants + more. . .

FMSD: Java Modeling Language /GU 181004 11 / 36

Java Modeling Language (JML)

JML is a specification language tailored to JAVA.

General JML Philosophy

Integrate

I specification

I implementation

in one single language.

⇒ JML is not external to JAVA

JML
is

JAVA + FO Logic

+ pre/postconditions, invariants + more. . .

FMSD: Java Modeling Language /GU 181004 11 / 36

Java Modeling Language (JML)

JML is a specification language tailored to JAVA.

General JML Philosophy

Integrate

I specification

I implementation

in one single language.

⇒ JML is not external to JAVA

JML
is

JAVA + FO Logic + pre/postconditions, invariants

+ more. . .

FMSD: Java Modeling Language /GU 181004 11 / 36

Java Modeling Language (JML)

JML is a specification language tailored to JAVA.

General JML Philosophy

Integrate

I specification

I implementation

in one single language.

⇒ JML is not external to JAVA

JML
is

JAVA + FO Logic + pre/postconditions, invariants + more. . .

FMSD: Java Modeling Language /GU 181004 11 / 36

JML Annotations

JML extends JAVA by annotations.

JML annotations include:

4 preconditions

4 postconditions

4 class invariants

4 additional modifiers

8 ‘specification-only’ fields

8 ‘specification-only’ methods

4 loop invariants

4 ...

8 ...

4: in this course, 8: not in this course

FMSD: Java Modeling Language /GU 181004 12 / 36

JML/JAVA integration

JML annotations are attached to JAVA programs
by

writing them directly into the JAVA source code files

Ensures compatibility with standard JAVA compiler:

JML annotations live in special JAVA comments,
ignored by JAVA compiler, recognized by JML tools

FMSD: Java Modeling Language /GU 181004 13 / 36

JML by Example

from the file ATM.java

...

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

...

Everything between /* and */ is invisible for JAVA.

FMSD: Java Modeling Language /GU 181004 14 / 36

JML by Example

from the file ATM.java

...

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

...

Everything between /* and */ is invisible for JAVA.

FMSD: Java Modeling Language /GU 181004 14 / 36

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

But:

A JAVA comment with ‘@’ as its first character
it is not a comment for JML tools.

JML annotations appear in JAVA comments starting with @.

How about “//”comments?

FMSD: Java Modeling Language /GU 181004 15 / 36

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

But:

A JAVA comment with ‘@’ as its first character
it is not a comment for JML tools.

JML annotations appear in JAVA comments starting with @.

How about “//”comments?

FMSD: Java Modeling Language /GU 181004 15 / 36

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

But:

A JAVA comment with ‘@’ as its first character
it is not a comment for JML tools.

JML annotations appear in JAVA comments starting with @.

How about “//”comments?

FMSD: Java Modeling Language /GU 181004 15 / 36

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

But:

A JAVA comment with ‘@’ as its first character
it is not a comment for JML tools.

JML annotations appear in JAVA comments starting with @.

How about “//”comments?

FMSD: Java Modeling Language /GU 181004 15 / 36

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated; @*/

equivalent to:

//@ public normal_behavior

//@ requires !customerAuthenticated;

//@ requires pin == insertedCard.correctPIN;

//@ ensures customerAuthenticated;

The easiest way to comment out JML:

/* @ public normal_behavior ... @*/

// @ public normal_behavior

// @ requires !customerAuthenticated;

...

FMSD: Java Modeling Language /GU 181004 16 / 36

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated; @*/

equivalent to:

//@ public normal_behavior

//@ requires !customerAuthenticated;

//@ requires pin == insertedCard.correctPIN;

//@ ensures customerAuthenticated;

The easiest way to comment out JML:

/* @ public normal_behavior ... @*/

// @ public normal_behavior

// @ requires !customerAuthenticated;

...

FMSD: Java Modeling Language /GU 181004 16 / 36

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated; @*/

equivalent to:

//@ public normal_behavior

//@ requires !customerAuthenticated;

//@ requires pin == insertedCard.correctPIN;

//@ ensures customerAuthenticated;

The easiest way to comment out JML:

/* @ public normal_behavior ... @*/

// @ public normal_behavior

// @ requires !customerAuthenticated;

...

FMSD: Java Modeling Language /GU 181004 16 / 36

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated; @*/

equivalent to:

//@ public normal_behavior

//@ requires !customerAuthenticated;

//@ requires pin == insertedCard.correctPIN;

//@ ensures customerAuthenticated;

The easiest way to comment out JML:

/* @ public normal_behavior ... @*/

// @ public normal_behavior

// @ requires !customerAuthenticated;

...

FMSD: Java Modeling Language /GU 181004 16 / 36

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

What about the intermediate ‘@’s?

Within a JML annotation, a ‘@’ is ignored:

I if it is the first (non-white) character in the line

I if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to use them.

FMSD: Java Modeling Language /GU 181004 17 / 36

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

What about the intermediate ‘@’s?

Within a JML annotation, a ‘@’ is ignored:

I if it is the first (non-white) character in the line

I if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to use them.

FMSD: Java Modeling Language /GU 181004 17 / 36

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

What about the intermediate ‘@’s?

Within a JML annotation, a ‘@’ is ignored:

I if it is the first (non-white) character in the line

I if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to use them.

FMSD: Java Modeling Language /GU 181004 17 / 36

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This is a public specification case:

1. it is accessible from all classes and interfaces

2. it can only mention public fields/methods of this class

2. Can be a problem. Solution later in the lecture.

FMSD: Java Modeling Language /GU 181004 18 / 36

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This is a public specification case:

1. it is accessible from all classes and interfaces

2. it can only mention public fields/methods of this class

2. Can be a problem. Solution later in the lecture.

FMSD: Java Modeling Language /GU 181004 18 / 36

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

Each keyword ending with behavior opens a ‘specification case’.

normal_behavior Specification Case

The method guarantees to not throw any exception

(on the top level),
if the caller guarantees all preconditions of this specification case.

FMSD: Java Modeling Language /GU 181004 19 / 36

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

Each keyword ending with behavior opens a ‘specification case’.

normal_behavior Specification Case

The method guarantees to not throw any exception (on the top level),

if the caller guarantees all preconditions of this specification case.

FMSD: Java Modeling Language /GU 181004 19 / 36

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

Each keyword ending with behavior opens a ‘specification case’.

normal_behavior Specification Case

The method guarantees to not throw any exception (on the top level),
if the caller guarantees all preconditions of this specification case.

FMSD: Java Modeling Language /GU 181004 19 / 36

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This specification case has two preconditions (marked by requires)

1. !customerAuthenticated

2. pin == insertedCard.correctPIN

here:
preconditions are boolean JAVA expressions

in general:
preconditions are boolean JML expressions (see below)

FMSD: Java Modeling Language /GU 181004 20 / 36

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This specification case has two preconditions (marked by requires)

1. !customerAuthenticated

2. pin == insertedCard.correctPIN

here:
preconditions are boolean JAVA expressions

in general:
preconditions are boolean JML expressions (see below)

FMSD: Java Modeling Language /GU 181004 20 / 36

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This specification case has two preconditions (marked by requires)

1. !customerAuthenticated

2. pin == insertedCard.correctPIN

here:
preconditions are boolean JAVA expressions

in general:
preconditions are boolean JML expressions (see below)

FMSD: Java Modeling Language /GU 181004 20 / 36

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

specifies only the case where both preconditions are true in prestate

the above is equivalent to:

/*@ public normal_behavior

@ requires (!customerAuthenticated

@ && pin == insertedCard.correctPIN);

@ ensures customerAuthenticated;

@*/

FMSD: Java Modeling Language /GU 181004 21 / 36

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This specification case has one postcondition (marked by ensures)

I customerAuthenticated

here:
postcondition is boolean JAVA expressions

in general:
postconditions are boolean JML expressions (see below)

FMSD: Java Modeling Language /GU 181004 22 / 36

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This specification case has one postcondition (marked by ensures)

I customerAuthenticated

here:
postcondition is boolean JAVA expressions

in general:
postconditions are boolean JML expressions (see below)

FMSD: Java Modeling Language /GU 181004 22 / 36

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This specification case has one postcondition (marked by ensures)

I customerAuthenticated

here:
postcondition is boolean JAVA expressions

in general:
postconditions are boolean JML expressions (see below)

FMSD: Java Modeling Language /GU 181004 22 / 36

JML by Example

different specification cases are connected by ‘also’.

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@

@ also

@

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 2;

@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;

@*/

public void enterPIN (int pin) {

if (...
FMSD: Java Modeling Language /GU 181004 23 / 36

JML by Example

/*@ <spec-case1> also

@

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 2;

@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;

@*/

public void enterPIN (int pin) { ...

for the first time, JML expression not a JAVA expression

\old(E) means: E evaluated in the prestate of enterPIN.

E can be any (arbitrarily complex) JML expression.

FMSD: Java Modeling Language /GU 181004 24 / 36

JML by Example

/*@ <spec-case1> also <spec-case2> also

@

@ public normal_behavior

@ requires insertedCard != null;

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter >= 2;

@ ensures insertedCard == null;

@ ensures \old(insertedCard).invalid;

@*/

public void enterPIN (int pin) { ...

two postconditions state that:

‘Given the above preconditions, enterPIN guarantees:

insertedCard == null and \old(insertedCard).invalid’

FMSD: Java Modeling Language /GU 181004 25 / 36

JML by Example

Question:

could it be

@ ensures \old(insertedCard.invalid);

instead of

@ ensures \old(insertedCard).invalid;

??

FMSD: Java Modeling Language /GU 181004 26 / 36

Specification Cases Complete?

consider spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

what does spec-case-1 not tell about poststate?

recall: fields of class ATM:

insertedCard

customerAuthenticated

wrongPINCounter

what happens with insertCard and wrongPINCounter?

FMSD: Java Modeling Language /GU 181004 27 / 36

Specification Cases Complete?

consider spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

what does spec-case-1 not tell about poststate?

recall: fields of class ATM:

insertedCard

customerAuthenticated

wrongPINCounter

what happens with insertCard and wrongPINCounter?

FMSD: Java Modeling Language /GU 181004 27 / 36

Specification Cases Complete?

consider spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

what does spec-case-1 not tell about poststate?

recall: fields of class ATM:

insertedCard

customerAuthenticated

wrongPINCounter

what happens with insertCard and wrongPINCounter?

FMSD: Java Modeling Language /GU 181004 27 / 36

Completing Specification Cases

completing spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@ ensures insertedCard == \old(insertedCard);

@ ensures wrongPINCounter == \old(wrongPINCounter);

FMSD: Java Modeling Language /GU 181004 28 / 36

Completing Specification Cases

completing spec-case-2:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 2;

@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;

@ ensures insertedCard == \old(insertedCard);

@ ensures customerAuthenticated

@ == \old(customerAuthenticated);

FMSD: Java Modeling Language /GU 181004 29 / 36

Completing Specification Cases

completing spec-case-3:

@ public normal_behavior

@ requires insertedCard != null;

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter >= 2;

@ ensures insertedCard == null;

@ ensures \old(insertedCard).invalid;

@ ensures customerAuthenticated

@ == \old(customerAuthenticated);

@ ensures wrongPINCounter == \old(wrongPINCounter);

FMSD: Java Modeling Language /GU 181004 30 / 36

Assignable Clause

unsatisfactory to add

@ ensures loc == \old(loc);

for all locations loc which do not change

instead:
add assignable clause for all locations which may change

@ assignable loc1,...,locn;

Meaning: No location other than loc1, . . . , locn can be assigned to.

Special cases:

No location may be changed:

@ assignable \nothing;

Unrestricted, method allowed to change anything:

@ assignable \everything;

FMSD: Java Modeling Language /GU 181004 31 / 36

Assignable Clause

unsatisfactory to add

@ ensures loc == \old(loc);

for all locations loc which do not change

instead:
add assignable clause for all locations which may change

@ assignable loc1,...,locn;

Meaning: No location other than loc1, . . . , locn can be assigned to.

Special cases:

No location may be changed:

@ assignable \nothing;

Unrestricted, method allowed to change anything:

@ assignable \everything;

FMSD: Java Modeling Language /GU 181004 31 / 36

Assignable Clause

unsatisfactory to add

@ ensures loc == \old(loc);

for all locations loc which do not change

instead:
add assignable clause for all locations which may change

@ assignable loc1,...,locn;

Meaning: No location other than loc1, . . . , locn can be assigned to.

Special cases:

No location may be changed:

@ assignable \nothing;

Unrestricted, method allowed to change anything:

@ assignable \everything;

FMSD: Java Modeling Language /GU 181004 31 / 36

Assignable Clause

unsatisfactory to add

@ ensures loc == \old(loc);

for all locations loc which do not change

instead:
add assignable clause for all locations which may change

@ assignable loc1,...,locn;

Meaning: No location other than loc1, . . . , locn can be assigned to.

Special cases:

No location may be changed:

@ assignable \nothing;

Unrestricted, method allowed to change anything:

@ assignable \everything;

FMSD: Java Modeling Language /GU 181004 31 / 36

Assignable Clause

unsatisfactory to add

@ ensures loc == \old(loc);

for all locations loc which do not change

instead:
add assignable clause for all locations which may change

@ assignable loc1,...,locn;

Meaning: No location other than loc1, . . . , locn can be assigned to.

Special cases:

No location may be changed:

@ assignable \nothing;

Unrestricted, method allowed to change anything:

@ assignable \everything;

FMSD: Java Modeling Language /GU 181004 31 / 36

Specification Cases with Assignable

completing spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@ assignable customerAuthenticated;

FMSD: Java Modeling Language /GU 181004 32 / 36

Specification Cases with Assignable

completing spec-case-2:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 2;

@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;

@ assignable wrongPINCounter;

FMSD: Java Modeling Language /GU 181004 33 / 36

Specification Cases with Assignable

completing spec-case-3:

@ public normal_behavior

@ requires insertedCard != null;

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter >= 2;

@ ensures insertedCard == null;

@ ensures \old(insertedCard).invalid;

@ assignable insertedCard,

@ insertedCard.invalid,

FMSD: Java Modeling Language /GU 181004 34 / 36

Assignable Groups

You can specify groups of locations as assignable, using ‘*’.

example:

@ assignable o.*, a[*];

makes all fields of object o and all positions of array a assignable.

FMSD: Java Modeling Language /GU 181004 35 / 36

Literature for this and the next Lecture

KeYbook W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. Schmitt,
M. Ulbrich, editors.
Deductive Software Verification - The KeY Book
Vol 10001 of LNCS, Springer, 2016
(E-book at link.springer.com)

Essential reading:

JML Tutorial M. Huisman, W. Ahrendt, D. Grahl, M. Hentschel.
Formal Specification with the Java Modeling Language
Chapter 7 in [KeYbook]

Further reading available at
www.eecs.ucf.edu/~leavens/JML//index.shtml

FMSD: Java Modeling Language /GU 181004 36 / 36

link.springer.com
http://www.eecs.ucf.edu/~leavens/JML//index.shtml
www.eecs.ucf.edu/~leavens/JML//index.shtml

	Overview
	Unit Specification
	Running Example
	Informal Specification
	JML
	JML by Example
	Assignable Locations
	Literature

