
Formal Methods for Software Development
Reasoning about Programs with Dynamic Logic

Wolfgang Ahrendt

11 October 2018

FMSD: DL 1 /GU 181011 1 / 33

Part I

Where are we?

FMSD: DL 1 /GU 181011 2 / 33

Where Are We?

before specification of Java programs with JML

now dynamic logic (DL) for resoning about Java programs

after that generating DL from JML+Java

+ verifying the resulting proof obligations

FMSD: DL 1 /GU 181011 3 / 33

Motivation

Consider the method

public void doubleContent(int [] a) {

int i = 0;

while (i < a.length) {

a[i] = a[i] * 2;

i++;

}

}

We want a logic/calculus allowing to express/prove properties like, e.g.:

If a 6= null

then doubleContent terminates normally
and afterwards all elements of a are twice the old value

FMSD: DL 1 /GU 181011 4 / 33

Dynamic Logic (Preview)

One such logic is dynamic logic (DL)

The above statement can be expressed in DL as follows:
(assuming a suitable signature)

a 6= null

∧ a 6= old a

∧ ∀int i;((0 ≤ i ∧ i < a.length)→ a[i] = old a[i])
→ 〈doubleContent(a);〉
∀int i;((0 ≤ i ∧ i < a.length)→ a[i] = 2 ∗ old a[i])

Observations

I DL combines first-order logic (FOL) with programs

I Theory of DL extends theory of FOL

FMSD: DL 1 /GU 181011 5 / 33

Today

introducing dynamic logic for Java

I short recap first-order logic (FOL)
I dynamic logic = extending FOL with

I dynamic interpretations
I programs to describe state change

FMSD: DL 1 /GU 181011 6 / 33

Repetition: First-Order Logic

Signature

A first-order signature Σ consists of

I a set TΣ of type symbols

I a set FΣ of function symbols

I a set PΣ of predicate symbols

Type Declarations

I τ x ; ‘variable x has type τ ’

I p(τ1, . . . , τr); ‘predicate p has argument types τ1, . . . , τr ’

I τ f (τ1, . . . , τr); ‘function f has argument types τ1, . . . , τr
and result type τ ’

FMSD: DL 1 /GU 181011 7 / 33

Recap: First-Order States

Definition (First-Order State)

Let D be a domain with typing function δ.

For each f be declared as τ f (τ1, . . . , τr);

and each p be declared as p(τ1, . . . , τr);

I(f) is a mapping I(f) : Dτ1 × · · · × Dτr → Dτ

I(p) is a set I(p) ⊆ Dτ1 × · · · × Dτr

Then S = (D, δ, I) is a first-order state

FMSD: DL 1 /GU 181011 8 / 33

Part II

Towards Dynamic Logic

FMSD: DL 1 /GU 181011 9 / 33

Towards Dynamic Logic

Reasoning about Java programs requires extensions of FOL

I Java type hierarchy

I Java program variables

I Java heap for reference types (next lecture)

FMSD: DL 1 /GU 181011 10 / 33

Type Hierarchy

Definition (Type Hierarchy)

I TΣ is set of types
I Subtype relation v ⊆ TΣ × TΣ with top element >

I τ v > for all τ ∈ TΣ

Example (A Minimal Type Hierarchy)

TΣ = {>}
All signature symbols have same type >

Example (Type Hierarchy for Java)

(see next slide)

FMSD: DL 1 /GU 181011 11 / 33

Modelling Java in FOL: Fixing a Type Hierarchy

Signature based on Java’s type hierarchy (sketch)

>

Heap Field

any

booleanint Object

classes + interfaces + array types

Null

Each interface and class in API and in target program becomes type
with appropriate subtype relation

FMSD: DL 1 /GU 181011 12 / 33

Subset of Types

Signature based on Java’s type hierarchy

>

. . .

any

booleanint . . .

int and boolean are the only types for today.
Class, interfaces, arrays: next lecture.

FMSD: DL 1 /GU 181011 13 / 33

Modelling Dynamic Properties

Only static properties expressable in typed FOL, e.g.,

I Values of fields in a certain range

I Invariant of a class implies invariant of its interface

Considers only one program state at a time

Goal: Express behavior of a program, e.g.:

If method setAge is called on an object o of type Person

and the method argument newAge is positive
then afterwards field age has same value as newAge

FMSD: DL 1 /GU 181011 14 / 33

Requirements

Requirements for a logic to reason about programs

I Can relate different program states, i.e., before and after execution,
within a single formula

I Program variables are represented by constant symbols, whose value
depend on program state

Dynamic Logic meets the above requirements

FMSD: DL 1 /GU 181011 15 / 33

Dynamic Logic

(Java) Dynamic Logic

Typed FOL

I + programs p

I + modalities 〈p〉φ, [p]φ (p program, φ DL formula)

I + . . . (later)

An Example

i > 5 → [i = i + 10;]i > 15

Meaning?

If program variable i is greater than 5 in current state, then after
executing the Java statement “i = i + 10;”, i is greater than 15

FMSD: DL 1 /GU 181011 16 / 33

Program Variables

Dynamic Logic = Typed FOL + . . .

i > 5 → [i = i + 10;]i > 15

Program variable i refers to different values before and after execution

I Program variables such as i are state-dependent constant symbols

I Value of state-dependent symbols changeable by a program

Three words one meaning: state-dependent, non-rigid, flexible

FMSD: DL 1 /GU 181011 17 / 33

Rigid versus Flexible Symbols

Signature of program logic defined as in FOL, but in addition, there are
program variables

Rigid versus Flexible

I Rigid symbols, meaning insensitive to program states

I First-order variables (aka logical variables)
I Built-in functions and predicates such as 0,1,...,+,*,...,<,...

I Flexible (or non-rigid) symbols, meaning depends on state.
Capture side effects on state during program execution

I Program variables are flexible

Any term containing at least one flexible symbol is called flexible

FMSD: DL 1 /GU 181011 18 / 33

Signature of Dynamic Logic

Definition (Dynamic Logic Signature)

Σ = (PΣ, FΣ, PVΣ, αΣ), FΣ ∩ PVΣ = ∅

(Rigid) Predicate Symbols PΣ = {>, >=, . . .}
(Rigid) Function Symbols FΣ = {+, −, ∗, 0, 1, . . .}
Flexible Program variables e.g. PVΣ = {i, j, ready, . . .}

Standard typing of Java symbols: boolean TRUE; <(int,int); . . .

FMSD: DL 1 /GU 181011 19 / 33

Dynamic Logic Signature - KeY input file

\sorts {

// only additional sorts (int, boolean, any predefined)

}

\functions {

// only additional rigid functions

// (arithmetic functions like +,- etc., predefined)

}

\predicates { /* same as for functions */ }

\programVariables { // flexible

int i, j;

boolean ready;

}

Empty sections can be left out

FMSD: DL 1 /GU 181011 20 / 33

Again: Two Kinds of Variables

Rigid:

Definition (First-Order/Logical Variables)

Typed logical variables (rigid), declared locally in quantifiers as T x;

They must not occur in programs!

Flexible:

Program Variables

I Are not FO variables

I Cannot be quantified

I May occur in programs (and formulas)

FMSD: DL 1 /GU 181011 21 / 33

Dynamic Logic Programs

Dynamic Logic = Typed FOL + programs . . .
Programs here: any legal sequence of Java statements.

Example

Signature for PVΣ: int r; int i; int n;

Signature for FΣ: int 0; int +(int,int); int -(int,int);

Signature for PΣ: <(int,int);

i=0;

r=0;

while (i<n) {

i=i+1;

r=r+i;

}

r=r+r-n;

Which value does the program compute in r?

FMSD: DL 1 /GU 181011 22 / 33

Relating Program States: Modalities

DL extends FOL with two additional operators:

I 〈p〉φ (diamond)

I [p]φ (box)

with p a program, φ another DL formula

Intuitive Meaning

I 〈p〉φ: p terminates and formula φ holds in final state
(total correctness)

I [p]φ: If p terminates then formula φ holds in final state
(partial correctness)

Attention: Java programs are deterministic, i.e., if a Java program
terminates then exactly one state is reached from a given initial state.

FMSD: DL 1 /GU 181011 23 / 33

Dynamic Logic - Examples

Let i, j, old_i, old_j denote program variables.
Give the meaning in natural language:

1. i = old i→ 〈i = i + 1;〉i > old i

If i = i + 1; is executed in a state where i and old_i have the
same value, then the program terminates and in its final state the
value of i is greater than the value of old_i .

2. i = old i→ [while(true){i = old i - 1;}]i > old i

If the program is executed in a state where i and old_i have the
same value and if the program terminates then in its final state the
value of i is greater than the value of old_i.

3. ∀ x . (〈prog1〉 i = x ↔ 〈prog2〉 i = x)
prog1 and prog2 are equivalent concerning termination and the

final value of i.

FMSD: DL 1 /GU 181011 24 / 33

Dynamic Logic: KeY Input File

\programVariables { // Declares global program variables

int i;

int old_i;

}

\problem { // The problem to verify is stated here

i = old_i -> \<{ i = i + 1; }\> i > old_i

}

Visibility

I Program variables declared globally can be accessed anywhere

I Program variables declared inside a modality only visible therein.
E.g., in “pre → 〈int j; p〉post”, j not visible in post

FMSD: DL 1 /GU 181011 25 / 33

Dynamic Logic Formulas

Definition (Dynamic Logic Formulas (DL Formulas))

I Each FOL formula is a DL formula

I If p is a program and φ a DL formula, then

{
〈p〉φ
[p]φ

}
is a DL formula

I DL formulas closed under FOL quantifiers and connectives

I Program variables are flexible constants: never bound in quantifiers

I Program variables need not be declared or initialized in program

I Programs contain no logical variables

I Modalities can be arbitrarily nested, e.g., 〈p〉[q]φ

FMSD: DL 1 /GU 181011 26 / 33

Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)

I ∀ int y ; ((〈x = 2;〉x = y) ↔ (〈x = 1; x++;〉x = y))

Well-formed if PVΣ contains int x;

I ∃ int x ; [x = 1;](x = 1)

Not well-formed, because logical variable occurs in program

I 〈x = 1;〉([while (true) {}]false)

Well-formed if PVΣ contains int x;

program formulas can be nested

FMSD: DL 1 /GU 181011 27 / 33

Dynamic Logic Semantics: States

First-order state can be considered as program state

I Interpretation of (flexible) program variables can vary from state to
state

I Interpretation of rigid symbols is the same in all states

(e.g., built-in functions and predicates)

Program states as first-order states

We identify first-order state S = (D, δ, I) with program state.

I Interpretation I only changes on program variables.

⇒ Enough to record values of variables ∈ PVΣ

I Set of all states S is called States

FMSD: DL 1 /GU 181011 28 / 33

Kripke Structure

Definition (Kripke Structure)

Kripke Structure or Labelled Transition System K = (States, ρ)

I States S = (D, δ, I) ∈ States

I Transition relation ρ : Program→ (States ⇀ States)

ρ(p)(S1) = S2

iff.
program p executed in state S1 terminates and its final state is S2,

otherwise undefined.

I ρ is the semantics of programs ∈ Program

I ρ(p)(S) can be undefined (‘⇀’):
p may not terminate when started in S

I Java programs are deterministic (unlike Promela):
ρ(p) is a function (at most one value)

FMSD: DL 1 /GU 181011 29 / 33

Semantic Evaluation of Program Formulas

Definition (Validity Relation for Program Formulas)

I S |= 〈p〉φ iff ρ(p)(S) is defined and ρ(p)(S) |= φ

(p terminates and φ is true in the final state after execution)

I s |= [p]φ iff ρ(p)(S) |= φ whenever ρ(p)(S) is defined

(If p terminates then φ is true in the final state after execution)

A DL formula φ is valid iff S |= φ for all states S.

I Duality: 〈p〉φ iff ¬[p]¬φ
Exercise: justify this with help of semantic definitions

I Implication: if 〈p〉φ then [p]φ
Total correctness implies partial correctness
I converse is false
I holds only for deterministic programs

FMSD: DL 1 /GU 181011 30 / 33

More Examples

Meaning?

Example

∀ τ y ; ((〈p〉x = y) ↔ (〈q〉x = y))

Programs p and q behave equivalently on variable τ x.

Example

∃ τ y ; (x = y → 〈p〉true)

Program p terminates if initial value of x is suitably chosen.

FMSD: DL 1 /GU 181011 31 / 33

Semantics of Programs

In labelled transition system K = (States, ρ):
ρ : Program→ (States ⇀ States) is semantics of programs p ∈ Program

ρ defined recursively on programs

Example (Semantics of assignment)

States S interpret program variables v with IS(v)

ρ(x=t;)(S) = S ′ where IS′(y) :=

{
IS(y) y 6= x

valS(t) y = x

Very advanced task to define ρ for Java ⇒ Not done in this course
Next lecture, we go directly to calculus for program formulas!

FMSD: DL 1 /GU 181011 32 / 33

Literature for this Lecture

KeYbook W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. Schmitt,
M. Ulbrich, editors.
Deductive Software Verification - The KeY Book
Vol 10001 of LNCS, Springer, 2016
(E-book at link.springer.com)

I W. Ahrendt, S. Grebing, Using the KeY Prover
Chapter 15 in [KeYbook]

further reading:

I B. Beckert, V. Klebanov, B. Weiß, Dynamic Logic for Java
Chapter 3 in [KeYbook]

FMSD: DL 1 /GU 181011 33 / 33

link.springer.com

	Titlepage
	Where are we?
	Towards Dynamic Logic

	Towards Dynamic Logic
	Type Hierarchy
	Signature
	Terms
	Program Formulas
	States
	Program Formula Valuation

