
Formal Methods for Software Development
Modeling Concurrency

Wolfgang Ahrendt

11 September 2018

FMSD: Concurrency /GU 180911 1 / 47

Concurrent Systems – The Big Picture

Concurrency: different processes trying not to run into each others’ way

Main problem of concurrency: sharing computational resources

http://www.youtube.com/watch?v=JgMB6nEv7K0

http://www.youtube.com/watch?v=G8eqymwUFi8

Shared resource = crossing, bikers = processes,
and a (data) race in progress, approaching a disaster.

Solutions to this must be carefully designed and verified, otherwise. . .

FMSD: Concurrency /GU 180911 2 / 47

http://www.youtube.com/watch?v=JgMB6nEv7K0
http://www.youtube.com/watch?v=G8eqymwUFi8

Concurrent Systems – The Big Picture

Concurrency: different processes trying not to run into each others’ way

Main problem of concurrency: sharing computational resources

http://www.youtube.com/watch?v=JgMB6nEv7K0

http://www.youtube.com/watch?v=G8eqymwUFi8

Shared resource = crossing, bikers = processes,
and a (data) race in progress, approaching a disaster.

Solutions to this must be carefully designed and verified, otherwise. . .

FMSD: Concurrency /GU 180911 2 / 47

http://www.youtube.com/watch?v=JgMB6nEv7K0
http://www.youtube.com/watch?v=G8eqymwUFi8

Concurrent Systems – The Big Picture

Concurrency: different processes trying not to run into each others’ way

Main problem of concurrency: sharing computational resources

http://www.youtube.com/watch?v=JgMB6nEv7K0

http://www.youtube.com/watch?v=G8eqymwUFi8

Shared resource = crossing, bikers = processes,

and a (data) race in progress, approaching a disaster.

Solutions to this must be carefully designed and verified, otherwise. . .

FMSD: Concurrency /GU 180911 2 / 47

http://www.youtube.com/watch?v=JgMB6nEv7K0
http://www.youtube.com/watch?v=G8eqymwUFi8

Concurrent Systems – The Big Picture

Concurrency: different processes trying not to run into each others’ way

Main problem of concurrency: sharing computational resources

http://www.youtube.com/watch?v=JgMB6nEv7K0

http://www.youtube.com/watch?v=G8eqymwUFi8

Shared resource = crossing, bikers = processes,
and a (data) race in progress, approaching a disaster.

Solutions to this must be carefully designed and verified, otherwise. . .

FMSD: Concurrency /GU 180911 2 / 47

http://www.youtube.com/watch?v=JgMB6nEv7K0
http://www.youtube.com/watch?v=G8eqymwUFi8

Concurrent Systems – The Big Picture

Concurrency: different processes trying not to run into each others’ way

Main problem of concurrency: sharing computational resources

http://www.youtube.com/watch?v=JgMB6nEv7K0

http://www.youtube.com/watch?v=G8eqymwUFi8

Shared resource = crossing, bikers = processes,
and a (data) race in progress, approaching a disaster.

Solutions to this must be carefully designed and verified, otherwise. . .

FMSD: Concurrency /GU 180911 2 / 47

http://www.youtube.com/watch?v=JgMB6nEv7K0
http://www.youtube.com/watch?v=G8eqymwUFi8

Concurrent Systems – The Big Picture

FMSD: Concurrency /GU 180911 3 / 47

Focus of this Lecture

Aim of Spin-style model checking methodology:

exhibit

design

flaws in

concurrent and distributed

software systems

Focus of this lecture:

I Modeling and analyzing concurrent systems

Focus of next lecture:

I Modeling and analyzing distributed systems

FMSD: Concurrency /GU 180911 4 / 47

Focus of this Lecture

Aim of Spin-style model checking methodology:

exhibit design flaws in

concurrent and distributed

software systems

Focus of this lecture:

I Modeling and analyzing concurrent systems

Focus of next lecture:

I Modeling and analyzing distributed systems

FMSD: Concurrency /GU 180911 4 / 47

Focus of this Lecture

Aim of Spin-style model checking methodology:

exhibit design flaws in concurrent and distributed software systems

Focus of this lecture:

I Modeling and analyzing concurrent systems

Focus of next lecture:

I Modeling and analyzing distributed systems

FMSD: Concurrency /GU 180911 4 / 47

Focus of this Lecture

Aim of Spin-style model checking methodology:

exhibit design flaws in concurrent and distributed software systems

Focus of this lecture:

I Modeling and analyzing concurrent systems

Focus of next lecture:

I Modeling and analyzing distributed systems

FMSD: Concurrency /GU 180911 4 / 47

Focus of this Lecture

Aim of Spin-style model checking methodology:

exhibit design flaws in concurrent and distributed software systems

Focus of this lecture:

I Modeling and analyzing concurrent systems

Focus of next lecture:

I Modeling and analyzing distributed systems

FMSD: Concurrency /GU 180911 4 / 47

Concurrent/Distributed systems difficult to get right

problems:

I hard to predict, hard to form faithful intuition

I enormous combinatorial explosion of possible behavior

I interleaving prone to unsafe operations

I counter measures prone to deadlocks
I limited control—from within applications—over ‘external’ factors:

I scheduling strategies
I relative speed of components
I performance of communication media
I reliability of communication media

FMSD: Concurrency /GU 180911 5 / 47

Concurrent/Distributed systems difficult to get right

problems:

I hard to predict, hard to form faithful intuition

I enormous combinatorial explosion of possible behavior

I interleaving prone to unsafe operations

I counter measures prone to deadlocks
I limited control—from within applications—over ‘external’ factors:

I scheduling strategies
I relative speed of components
I performance of communication media
I reliability of communication media

FMSD: Concurrency /GU 180911 5 / 47

Concurrent/Distributed systems difficult to get right

problems:

I hard to predict, hard to form faithful intuition

I enormous combinatorial explosion of possible behavior

I interleaving prone to unsafe operations

I counter measures prone to deadlocks
I limited control—from within applications—over ‘external’ factors:

I scheduling strategies
I relative speed of components
I performance of communication media
I reliability of communication media

FMSD: Concurrency /GU 180911 5 / 47

Concurrent/Distributed systems difficult to get right

problems:

I hard to predict, hard to form faithful intuition

I enormous combinatorial explosion of possible behavior

I interleaving prone to unsafe operations

I counter measures prone to deadlocks

I limited control—from within applications—over ‘external’ factors:

I scheduling strategies
I relative speed of components
I performance of communication media
I reliability of communication media

FMSD: Concurrency /GU 180911 5 / 47

Concurrent/Distributed systems difficult to get right

problems:

I hard to predict, hard to form faithful intuition

I enormous combinatorial explosion of possible behavior

I interleaving prone to unsafe operations

I counter measures prone to deadlocks
I limited control—from within applications—over ‘external’ factors:

I scheduling strategies
I relative speed of components
I performance of communication media
I reliability of communication media

FMSD: Concurrency /GU 180911 5 / 47

Concurrent/Distributed systems difficult to get right

problems:

I hard to predict, hard to form faithful intuition

I enormous combinatorial explosion of possible behavior

I interleaving prone to unsafe operations

I counter measures prone to deadlocks
I limited control—from within applications—over ‘external’ factors:

I scheduling strategies

I relative speed of components
I performance of communication media
I reliability of communication media

FMSD: Concurrency /GU 180911 5 / 47

Concurrent/Distributed systems difficult to get right

problems:

I hard to predict, hard to form faithful intuition

I enormous combinatorial explosion of possible behavior

I interleaving prone to unsafe operations

I counter measures prone to deadlocks
I limited control—from within applications—over ‘external’ factors:

I scheduling strategies
I relative speed of components

I performance of communication media
I reliability of communication media

FMSD: Concurrency /GU 180911 5 / 47

Concurrent/Distributed systems difficult to get right

problems:

I hard to predict, hard to form faithful intuition

I enormous combinatorial explosion of possible behavior

I interleaving prone to unsafe operations

I counter measures prone to deadlocks
I limited control—from within applications—over ‘external’ factors:

I scheduling strategies
I relative speed of components
I performance of communication media

I reliability of communication media

FMSD: Concurrency /GU 180911 5 / 47

Concurrent/Distributed systems difficult to get right

problems:

I hard to predict, hard to form faithful intuition

I enormous combinatorial explosion of possible behavior

I interleaving prone to unsafe operations

I counter measures prone to deadlocks
I limited control—from within applications—over ‘external’ factors:

I scheduling strategies
I relative speed of components
I performance of communication media
I reliability of communication media

FMSD: Concurrency /GU 180911 5 / 47

Testing Concurrent or Distributed System is Hard

We cannot exhaustively test concurrent/distributed systems

I lack of controllability
⇒ we miss failures in test phase

I lack of reproducability
⇒ even if failures appear in test phase,

often impossible to analyze/debug defect

I lack of time
exhaustive testing exhausts the testers long before it exhausts
behavior of the system...

FMSD: Concurrency /GU 180911 6 / 47

Testing Concurrent or Distributed System is Hard

We cannot exhaustively test concurrent/distributed systems

I lack of controllability
⇒ we miss failures in test phase

I lack of reproducability
⇒ even if failures appear in test phase,

often impossible to analyze/debug defect

I lack of time
exhaustive testing exhausts the testers long before it exhausts
behavior of the system...

FMSD: Concurrency /GU 180911 6 / 47

Testing Concurrent or Distributed System is Hard

We cannot exhaustively test concurrent/distributed systems

I lack of controllability
⇒ we miss failures in test phase

I lack of reproducability
⇒ even if failures appear in test phase,

often impossible to analyze/debug defect

I lack of time
exhaustive testing exhausts the testers long before it exhausts
behavior of the system...

FMSD: Concurrency /GU 180911 6 / 47

Mission of Spin-style Model Checking

offer an efficient methodology to

I improve the design

I exhibit defects

of concurrent and distributed systems

FMSD: Concurrency /GU 180911 7 / 47

Activities in Spin-style Model Checking

1. model (critical aspects of) concurrent/distributed system with
Promela

2. state crucial properties with assertions, temporal logic, . . .

3. use Spin to check all possible runs of the model

4. analyze result, possibly re-work 1. and 2.

Separate concerns of model vs. property! Check the property you want
the model to have, not the one it happens to have.

FMSD: Concurrency /GU 180911 8 / 47

Activities in Spin-style Model Checking

1. model (critical aspects of) concurrent/distributed system with
Promela

2. state crucial properties with assertions, temporal logic, . . .

3. use Spin to check all possible runs of the model

4. analyze result, possibly re-work 1. and 2.

Separate concerns of model vs. property! Check the property you want
the model to have, not the one it happens to have.

FMSD: Concurrency /GU 180911 8 / 47

Main Challenges of Modeling

expressiveness
Model must be expressive enough to ‘embrace’ defects the
real system could have

simplicity
Model must be simple enough to be ‘model checkable’,
theoretically and practically

FMSD: Concurrency /GU 180911 9 / 47

Modeling Concurrent Systems in Promela

In the Spin approach,
the cornerstone of modeling concurrent/distributed systems are

Promela processes.

FMSD: Concurrency /GU 180911 10 / 47

Initializing Processes

Can be instantiated implicitly using ‘active’.

Can be instantiated explicitly with key word ‘init’

i n i t {

print f ("Hello world\n")
}

init is used to start other processes with run statement.

FMSD: Concurrency /GU 180911 11 / 47

Initializing Processes

Can be instantiated implicitly using ‘active’.

Can be instantiated explicitly with key word ‘init’

i n i t {

print f ("Hello world\n")
}

init is used to start other processes with run statement.

FMSD: Concurrency /GU 180911 11 / 47

Starting Processes

Processes can be started explicitly using run

proctype P() {

byte x;

...

}

i n i t {

run P();

run P()

}

Each run operator starts copy of process (with copy of local variables)

run P() does not wait for P to finish

(Promela’s run corresponds to Java’s start, not to Java’s run)

FMSD: Concurrency /GU 180911 12 / 47

Starting Processes

Processes can be started explicitly using run

proctype P() {

byte x;

...

}

i n i t {

run P();

run P()

}

Each run operator starts copy of process (with copy of local variables)

run P() does not wait for P to finish

(Promela’s run corresponds to Java’s start, not to Java’s run)

FMSD: Concurrency /GU 180911 12 / 47

Starting Processes

Processes can be started explicitly using run

proctype P() {

byte x;

...

}

i n i t {

run P();

run P()

}

Each run operator starts copy of process (with copy of local variables)

run P() does not wait for P to finish

(Promela’s run corresponds to Java’s start, not to Java’s run)

FMSD: Concurrency /GU 180911 12 / 47

Atomic Start of Multiple Processes

By convention, run operators enclosed in atomic block

proctype P() {

byte x;

...

}

i n i t {

atomic {

run P();

run P()

}

}

Effect: processes only start executing once all are created

(More on atomic later)

FMSD: Concurrency /GU 180911 13 / 47

Atomic Start of Multiple Processes

By convention, run operators enclosed in atomic block

proctype P() {

byte x;

...

}

i n i t {

atomic {

run P();

run P()

}

}

Effect: processes only start executing once all are created

(More on atomic later)

FMSD: Concurrency /GU 180911 13 / 47

Atomic Start of Multiple Processes

By convention, run operators enclosed in atomic block

proctype P() {

byte x;

...

}

i n i t {

atomic {

run P();

run P()

}

}

Effect: processes only start executing once all are created

(More on atomic later)

FMSD: Concurrency /GU 180911 13 / 47

Joining Processes

joining: waiting for all other processes to finish

byte result;

proctype P() {

...

}

i n i t {

atomic {

run P();

run P()

}

(_nr_pr == 1); /* blocks until join*/

print f ("result =%d", result)

}

_nr_pr built-in variable holding number of running processes
_nr_pr == 1 only ‘this’ process (init) is (still) running

FMSD: Concurrency /GU 180911 14 / 47

Joining Processes

joining: waiting for all other processes to finish

byte result;

proctype P() {

...

}

i n i t {

atomic {

run P();

run P()

}

(_nr_pr == 1); /* blocks until join*/

print f ("result =%d", result)

}

_nr_pr built-in variable holding number of running processes
_nr_pr == 1 only ‘this’ process (init) is (still) running
FMSD: Concurrency /GU 180911 14 / 47

Process Parameters

Processes may have formal parameters, instantiated by run:

proctype P(byte id; byte incr) {

...

}

i n i t {

run P(7, 10);

run P(8, 15)

}

FMSD: Concurrency /GU 180911 15 / 47

Active (Sets of) Processes

init can be made implicit by using the active modifier:

active proctype P() {

...

}

Implicit init will run one copy of P

active [n] proctype P() {

...

}

Implicit init will run n copies of P

FMSD: Concurrency /GU 180911 16 / 47

Active (Sets of) Processes

init can be made implicit by using the active modifier:

active proctype P() {

...

}

Implicit init will run one copy of P

active [n] proctype P() {

...

}

Implicit init will run n copies of P

FMSD: Concurrency /GU 180911 16 / 47

Local and Global Data

Variables declared outside of the processes are global to all processes.

Variables declared inside a process are local to that processes.

byte n;

proctype P(byte id; byte incr) {

byte t;

...

}

n is global
t is local

FMSD: Concurrency /GU 180911 17 / 47

Modeling with Global Data

Pragmatics of modeling with global data:

Shared memory of concurrent systems often modeled
by global variables of numeric (or array) type

Status of shared resources (printer, traffic light, ...) often modeled
by global variables of Boolean or enumeration type
(bool/mtype).

Communication mediums of distributed systems often modeled
by global variables of channel type (chan). (next lecture)

FMSD: Concurrency /GU 180911 18 / 47

Interference on Global Data

byte n = 0;

active proctype P() {

n = 1;

print f ("Proc P, n = %d\n", n)

}

active proctype Q() {

n = 2;

print f ("Proc Q, n = %d\n", n)

}

How many outputs possible?

Different processes can interfere on global data

FMSD: Concurrency /GU 180911 19 / 47

Interference on Global Data

byte n = 0;

active proctype P() {

n = 1;

print f ("Proc P, n = %d\n", n)

}

active proctype Q() {

n = 2;

print f ("Proc Q, n = %d\n", n)

}

How many outputs possible?

Different processes can interfere on global data

FMSD: Concurrency /GU 180911 19 / 47

Interference on Global Data

byte n = 0;

active proctype P() {

n = 1;

print f ("Proc P, n = %d\n", n)

}

active proctype Q() {

n = 2;

print f ("Proc Q, n = %d\n", n)

}

How many outputs possible?

Different processes can interfere on global data

FMSD: Concurrency /GU 180911 19 / 47

Interference on Global Data

byte n = 0;

active proctype P() {

n = 1;

print f ("Proc P, n = %d\n", n)

}

active proctype Q() {

n = 2;

print f ("Proc Q, n = %d\n", n)

}

How many outputs possible?

Different processes can interfere on global data

FMSD: Concurrency /GU 180911 19 / 47

Examples

1. interleave0.pml

Spin simulation, SpinSpider automata + transition system

2. interleave1.pml

Spin simulation, adding assertion, fine-grained execution model,
model checking

3. interleave5.pml

Spin simulation, Spin model checking, trail inspection

FMSD: Concurrency /GU 180911 20 / 47

Synchronization on Global Data

Promela has no synchronization primitives,
like semaphores, locks, or monitors.

Instead, Promela inhibits concept of statement executability.

Executability addresses many issues in the interplay of processes.

Most synchronization primitives
(test & set, compare & swap, semaphores, ...)
can be modeled w. executability and atomicity.

FMSD: Concurrency /GU 180911 21 / 47

Synchronization on Global Data

Promela has no synchronization primitives,
like semaphores, locks, or monitors.

Instead, Promela inhibits concept of statement executability.

Executability addresses many issues in the interplay of processes.

Most synchronization primitives
(test & set, compare & swap, semaphores, ...)
can be modeled w. executability and atomicity.

FMSD: Concurrency /GU 180911 21 / 47

Synchronization on Global Data

Promela has no synchronization primitives,
like semaphores, locks, or monitors.

Instead, Promela inhibits concept of statement executability.

Executability addresses many issues in the interplay of processes.

Most synchronization primitives
(test & set, compare & swap, semaphores, ...)
can be modeled w. executability and atomicity.

FMSD: Concurrency /GU 180911 21 / 47

Synchronization on Global Data

Promela has no synchronization primitives,
like semaphores, locks, or monitors.

Instead, Promela inhibits concept of statement executability.

Executability addresses many issues in the interplay of processes.

Most synchronization primitives
(test & set, compare & swap, semaphores, ...)
can be modeled w. executability and atomicity.

FMSD: Concurrency /GU 180911 21 / 47

Executability

Each statement has the notion of executability.
Executability of basic statements:

statement type executable

assignment always

assertion always

print statement always

expression statement

iff value not 0/false

send/receive statement

(next lecture)

Definition (Expression Statement)

An expression statement is a statement only consisting of an expression.

FMSD: Concurrency /GU 180911 22 / 47

Executability

Each statement has the notion of executability.
Executability of basic statements:

statement type executable

assignment always

assertion always

print statement always

expression statement

iff value not 0/false

send/receive statement

(next lecture)

Definition (Expression Statement)

An expression statement is a statement only consisting of an expression.

FMSD: Concurrency /GU 180911 22 / 47

Executability

Each statement has the notion of executability.
Executability of basic statements:

statement type executable

assignment always

assertion always

print statement always

expression statement iff value not 0/false

send/receive statement

(next lecture)

Definition (Expression Statement)

An expression statement is a statement only consisting of an expression.

FMSD: Concurrency /GU 180911 22 / 47

Executability

Each statement has the notion of executability.
Executability of basic statements:

statement type executable

assignment always

assertion always

print statement always

expression statement iff value not 0/false

send/receive statement (next lecture)

Definition (Expression Statement)

An expression statement is a statement only consisting of an expression.

FMSD: Concurrency /GU 180911 22 / 47

Executability (Cont’d)

Executability of compound statements:

if resp. do statement is executable
iff

any of its alternatives1 is executable

An alternative is executable
iff

its guard (the first statement) is executable
(Recall: in alternatives, “->” syntactic sugar for “;”)

(Inspect end.pml)

1

alternative = list of statements

FMSD: Concurrency /GU 180911 23 / 47

Executability (Cont’d)

Executability of compound statements:

if resp. do statement is executable
iff

any of its alternatives1 is executable

An alternative is executable
iff

its guard (the first statement) is executable
(Recall: in alternatives, “->” syntactic sugar for “;”)

(Inspect end.pml)

1alternative = list of statements
FMSD: Concurrency /GU 180911 23 / 47

Executability (Cont’d)

Executability of compound statements:

if resp. do statement is executable
iff

any of its alternatives1 is executable

An alternative is executable
iff

its guard (the first statement) is executable

(Recall: in alternatives, “->” syntactic sugar for “;”)

(Inspect end.pml)

1alternative = list of statements
FMSD: Concurrency /GU 180911 23 / 47

Executability (Cont’d)

Executability of compound statements:

if resp. do statement is executable
iff

any of its alternatives1 is executable

An alternative is executable
iff

its guard (the first statement) is executable
(Recall: in alternatives, “->” syntactic sugar for “;”)

(Inspect end.pml)

1alternative = list of statements
FMSD: Concurrency /GU 180911 23 / 47

Executability (Cont’d)

Executability of compound statements:

if resp. do statement is executable
iff

any of its alternatives1 is executable

An alternative is executable
iff

its guard (the first statement) is executable
(Recall: in alternatives, “->” syntactic sugar for “;”)

(Inspect end.pml)

1alternative = list of statements
FMSD: Concurrency /GU 180911 23 / 47

Executability and Blocking

Definition (Blocking)

A statement blocks iff it is not executable.
A process blocks iff its location counter points to a blocking statement.

For each step of execution, the scheduler nondeterministically chooses a
process to execute

among the non-blocking processes.

Executability, resp. blocking are the key to Promela-style modeling of
solutions to synchronization problems.

FMSD: Concurrency /GU 180911 24 / 47

Executability and Blocking

Definition (Blocking)

A statement blocks iff it is not executable.
A process blocks iff its location counter points to a blocking statement.

For each step of execution, the scheduler nondeterministically chooses a
process to execute among the non-blocking processes.

Executability, resp. blocking are the key to Promela-style modeling of
solutions to synchronization problems.

FMSD: Concurrency /GU 180911 24 / 47

Executability and Blocking

Definition (Blocking)

A statement blocks iff it is not executable.
A process blocks iff its location counter points to a blocking statement.

For each step of execution, the scheduler nondeterministically chooses a
process to execute among the non-blocking processes.

Executability, resp. blocking are the key to Promela-style modeling of
solutions to synchronization problems.

FMSD: Concurrency /GU 180911 24 / 47

Deadlock

Definition (Deadlock (simplified))

Let CRP be the set of currently running processes.
A deadlock is a point in the execution where

I CRP 6= ∅
I all p ∈ CRP are blocking

(Verify end.pml)

FMSD: Concurrency /GU 180911 25 / 47

Valid End States

Definition (End Location)

End locations of a process P are:

I P’s textual end

I each location marked with an end label: “endxxx:”

FMSD: Concurrency /GU 180911 26 / 47

Valid End States

Definition (End Location)

End locations of a process P are:

I P’s textual end

I each location marked with an end label: “endxxx:”

FMSD: Concurrency /GU 180911 26 / 47

Deadlock

Definition (Deadlock (full version))

Let CRP be the set of currently running processes.
Let NEL ⊆ CRP be the set of (currently running) processes which are
not at a valid end location.
A deadlock is a point in the execution where

I NEL 6= ∅
I all p ∈ NEL are blocking

FMSD: Concurrency /GU 180911 27 / 47

Deadlock Detection

SPIN checks deadlocks per default!

⇒ No need to specify deadlock freedom.

Deadlock signaled by:

I ‘invalid end state’ error (in verification mode)

I ‘timeout’ in simulation mode

Deadlock check can be switched off by ./pan -E

(Fix end.pml)

FMSD: Concurrency /GU 180911 28 / 47

Deadlock Detection

SPIN checks deadlocks per default!
⇒ No need to specify deadlock freedom.

Deadlock signaled by:

I ‘invalid end state’ error (in verification mode)

I ‘timeout’ in simulation mode

Deadlock check can be switched off by ./pan -E

(Fix end.pml)

FMSD: Concurrency /GU 180911 28 / 47

Deadlock Detection

SPIN checks deadlocks per default!
⇒ No need to specify deadlock freedom.

Deadlock signaled by:

I ‘invalid end state’ error (in verification mode)

I ‘timeout’ in simulation mode

Deadlock check can be switched off by ./pan -E

(Fix end.pml)

FMSD: Concurrency /GU 180911 28 / 47

Deadlock Detection

SPIN checks deadlocks per default!
⇒ No need to specify deadlock freedom.

Deadlock signaled by:

I ‘invalid end state’ error (in verification mode)

I ‘timeout’ in simulation mode

Deadlock check can be switched off by ./pan -E

(Fix end.pml)

FMSD: Concurrency /GU 180911 28 / 47

Deadlock Detection

SPIN checks deadlocks per default!
⇒ No need to specify deadlock freedom.

Deadlock signaled by:

I ‘invalid end state’ error (in verification mode)

I ‘timeout’ in simulation mode

Deadlock check can be switched off by ./pan -E

(Fix end.pml)

FMSD: Concurrency /GU 180911 28 / 47

Atomicity

limit the possibility of sequences being interrupted by other processes

weakly atomic sequence
can only be interrupted when a statement blocks

defined in Promela by atomic{list of statements }

strongly atomic sequence
cannot be interrupted at all

defined in Promela by d step{list of statements }

FMSD: Concurrency /GU 180911 29 / 47

Atomicity

limit the possibility of sequences being interrupted by other processes

weakly atomic sequence
can only be interrupted when a statement blocks
defined in Promela by atomic{list of statements }

strongly atomic sequence
cannot be interrupted at all
defined in Promela by d step{list of statements }

FMSD: Concurrency /GU 180911 29 / 47

Executability (Cont’d)

atomic resp. d step statement is executable
iff

guard (i.e., the first inner statement) is executable

FMSD: Concurrency /GU 180911 30 / 47

Deterministic Sequences

d step:

I strongly atomic

I deterministic (like a single step)

I choices resolved in fixed way (always take the first possible option)
⇒ avoid choices in d step

I it is an error if any statement within d step,
other than the first one (called ‘guard’), blocks

d step {

stmt1; ← guard
stmt2;

stmt3

}

If stmt1 blocks, d step is not entered, and blocks as a whole.

It is an error if stmt2 or stmt3 block.

FMSD: Concurrency /GU 180911 31 / 47

Deterministic Sequences

d step:

I strongly atomic

I deterministic (like a single step)

I choices resolved in fixed way (always take the first possible option)
⇒ avoid choices in d step

I it is an error if any statement within d step,
other than the first one (called ‘guard’), blocks

d step {

stmt1; ← guard
stmt2;

stmt3

}

If stmt1 blocks, d step is not entered, and blocks as a whole.

It is an error if stmt2 or stmt3 block.

FMSD: Concurrency /GU 180911 31 / 47

Deterministic Sequences

d step:

I strongly atomic

I deterministic (like a single step)

I choices resolved in fixed way (always take the first possible option)
⇒ avoid choices in d step

I it is an error if any statement within d step,
other than the first one (called ‘guard’), blocks

d step {

stmt1; ← guard
stmt2;

stmt3

}

If stmt1 blocks, d step is not entered, and blocks as a whole.

It is an error if stmt2 or stmt3 block.

FMSD: Concurrency /GU 180911 31 / 47

(Weakly) Atomic Sequences

atomic:

I weakly atomic

I can be non-deterministic

atomic {

stmt1; ← guard
stmt2;

stmt3

}

If guard blocks, atomic is not entered, and blocks as a whole.

Once atomic is entered, control is kept until a statement blocks, and
only in this case passed to another process.

FMSD: Concurrency /GU 180911 32 / 47

The Critical Section Problem

Archetypal problem of concurrent systems

Critical section: Section of code/model where interference of other
processes can cause problems

Given a number of looping processes, each containing a critical section,
design an algorithm such that:

Mutual Exclusion At most one process is executing its critical section
at any time.

Absence of Deadlock If some processes are trying to enter their critical
sections, then one of them must eventually succeed.

Absence of (individual) Starvation If any process tries to enter its
critical section, then that process must eventually succeed.

FMSD: Concurrency /GU 180911 33 / 47

The Critical Section Problem

Archetypal problem of concurrent systems

Critical section: Section of code/model where interference of other
processes can cause problems

Given a number of looping processes, each containing a critical section,
design an algorithm such that:

Mutual Exclusion At most one process is executing its critical section
at any time.

Absence of Deadlock If some processes are trying to enter their critical
sections, then one of them must eventually succeed.

Absence of (individual) Starvation If any process tries to enter its
critical section, then that process must eventually succeed.

FMSD: Concurrency /GU 180911 33 / 47

The Critical Section Problem

Archetypal problem of concurrent systems

Critical section: Section of code/model where interference of other
processes can cause problems

Given a number of looping processes, each containing a critical section,
design an algorithm such that:

Mutual Exclusion At most one process is executing its critical section
at any time.

Absence of Deadlock If some processes are trying to enter their critical
sections, then one of them must eventually succeed.

Absence of (individual) Starvation If any process tries to enter its
critical section, then that process must eventually succeed.

FMSD: Concurrency /GU 180911 33 / 47

The Critical Section Problem

Archetypal problem of concurrent systems

Critical section: Section of code/model where interference of other
processes can cause problems

Given a number of looping processes, each containing a critical section,
design an algorithm such that:

Mutual Exclusion At most one process is executing its critical section
at any time.

Absence of Deadlock If some processes are trying to enter their critical
sections, then one of them must eventually succeed.

Absence of (individual) Starvation If any process tries to enter its
critical section, then that process must eventually succeed.

FMSD: Concurrency /GU 180911 33 / 47

The Critical Section Problem

Archetypal problem of concurrent systems

Critical section: Section of code/model where interference of other
processes can cause problems

Given a number of looping processes, each containing a critical section,
design an algorithm such that:

Mutual Exclusion At most one process is executing its critical section
at any time.

Absence of Deadlock If some processes are trying to enter their critical
sections, then one of them must eventually succeed.

Absence of (individual) Starvation If any process tries to enter its
critical section, then that process must eventually succeed.

FMSD: Concurrency /GU 180911 33 / 47

The Critical Section Problem

Archetypal problem of concurrent systems

Critical section: Section of code/model where interference of other
processes can cause problems

Given a number of looping processes, each containing a critical section,
design an algorithm such that:

Mutual Exclusion At most one process is executing its critical section
at any time.

Absence of Deadlock If some processes are trying to enter their critical
sections, then one of them must eventually succeed.

Absence of (individual) Starvation If any process tries to enter its
critical section, then that process must eventually succeed.

FMSD: Concurrency /GU 180911 33 / 47

Critical Section Pattern

For demonstration and simplicity:
Noncritical and critical sections only printf statements here

active proctype P() {

do :: print f ("P non -critical actions\n");
/* begin critical section */

print f ("P uses shared resourses\n")
/* end critical section */

od
}

active proctype Q() {

do :: print f ("Q non -critical actions\n");
/* begin critical section */

print f ("Q uses shared resourses\n")
/* end critical section */

od
}

FMSD: Concurrency /GU 180911 34 / 47

No Mutual Exclusion Yet

More infrastructure to achieve ME.
Adding two Boolean flags:

bool P_in_CS = f a l s e ;
bool Q_in_CS = f a l s e ;

active proctype P() {

do :: print f ("P non -critical actions\n");
P_in_CS = true;
/* begin critical section */

print f ("P uses shared resourses\n");
/* end critical section */

P_in_CS = f a l s e
od

}

active proctype Q() {

...correspondingly...
}

FMSD: Concurrency /GU 180911 35 / 47

Show Mutual Exclusion VIOLATION with Spin

adding assertions

bool P_in_CS = f a l s e ;
bool Q_in_CS = f a l s e ;

active proctype P() {

do :: print f ("P non -critical actions\n");
P_in_CS = true;
/* begin critical section */

print f ("P uses shared resourses\n");
assert (! Q_in_CS);
/* end critical section */

P_in_CS = f a l s e
od

}

active proctype Q() {

........assert (! P_in_CS);........
}

FMSD: Concurrency /GU 180911 36 / 47

Mutual Exclusion by Busy Waiting

bool P_in_CS = f a l s e ;
bool Q_in_CS = f a l s e ;

active proctype P() {

do :: print f ("P non -critical actions\n");
P_in_CS = true;
do :: !Q_in_CS -> break

:: e l se -> skip
od;
/* begin critical section */

print f ("P uses shared resourses\n");
assert (! Q_in_CS);
/* end critical section */

P_in_CS = f a l s e
od

}

active proctype Q() { ...correspondingly... }

FMSD: Concurrency /GU 180911 37 / 47

Mutual Exclusion by Blocking

Instead of Busy Waiting, process should

1. yield control,

2. continue to run only when exclusion properties becomes true again.

We use expression statement !Q_in_CS

to let process P block where it should not proceed!

FMSD: Concurrency /GU 180911 38 / 47

Mutual Exclusion by Blocking

Instead of Busy Waiting, process should

1. yield control,

2. continue to run only when exclusion properties becomes true again.

We use expression statement !Q_in_CS

to let process P block where it should not proceed!

FMSD: Concurrency /GU 180911 38 / 47

Mutual Exclusion by Blocking

active proctype P() {

do :: print f ("P non -critical actions\n");
P_in_CS = true;
!Q in CS;

/* begin critical section */

print f ("P uses shared resourses\n");
assert (! Q_in_CS);
/* end critical section */

P_in_CS = f a l s e
od

}

active proctype Q() {

...correspondingly...
}

FMSD: Concurrency /GU 180911 39 / 47

Verify Mutual Exclusion of this

Verify with Spin

Spin error (invalid end state)
⇒ deadlock

can make pan ignore the deadlock: ./pan -E

Spin still reports assertion violation(!)

FMSD: Concurrency /GU 180911 40 / 47

Verify Mutual Exclusion of this

Verify with Spin

Spin error (invalid end state)
⇒ deadlock

can make pan ignore the deadlock: ./pan -E

Spin still reports assertion violation(!)

FMSD: Concurrency /GU 180911 40 / 47

Verify Mutual Exclusion of this

Verify with Spin

Spin error (invalid end state)
⇒ deadlock

can make pan ignore the deadlock: ./pan -E

Spin still reports assertion violation(!)

FMSD: Concurrency /GU 180911 40 / 47

Verify Mutual Exclusion of this

Verify with Spin

Spin error (invalid end state)
⇒ deadlock

can make pan ignore the deadlock: ./pan -E

Spin still reports assertion violation(!)

FMSD: Concurrency /GU 180911 40 / 47

Proving Mutual Exclusion

In this example:

I mutual exclusion (ME) cannot be shown by Spin

I P/Q in CS sufficient for achieving ME

I P/Q in CS not sufficient for proving ME

Need more infrastructure.

Ghost variables: variables for verification, not for modeling

FMSD: Concurrency /GU 180911 41 / 47

Proving Mutual Exclusion

In this example:

I mutual exclusion (ME) cannot be shown by Spin

I P/Q in CS sufficient for achieving ME

I P/Q in CS not sufficient for proving ME

Need more infrastructure.

Ghost variables: variables for verification, not for modeling

FMSD: Concurrency /GU 180911 41 / 47

Proving Mutual Exclusion

In this example:

I mutual exclusion (ME) cannot be shown by Spin

I P/Q in CS sufficient for achieving ME

I P/Q in CS not sufficient for proving ME

Need more infrastructure.

Ghost variables: variables for verification, not for modeling

FMSD: Concurrency /GU 180911 41 / 47

Proving Mutual Exclusion

In this example:

I mutual exclusion (ME) cannot be shown by Spin

I P/Q in CS sufficient for achieving ME

I P/Q in CS not sufficient for proving ME

Need more infrastructure.

Ghost variables: variables for verification, not for modeling

FMSD: Concurrency /GU 180911 41 / 47

Show Mutual Exclusion with Ghost Variable

int critical = 0;

active proctype P() {

do :: print f ("P non -critical actions\n");
P_in_CS = true;
!Q_in_CS;

/* begin critical section */

critical++;

print f ("P uses shared resourses\n");
assert (critical < 2);

critical--;

/* end critical section */

P_in_CS = f a l s e
od

}

active proctype Q() {

...correspondingly...
}
FMSD: Concurrency /GU 180911 42 / 47

Verify Mutual Exclusion of this

Spin (./pan -E) shows no assertion is violated
⇒ mutual exclusion is verified

Still Spin (without -E) reports (invalid end state)
⇒ deadlock

FMSD: Concurrency /GU 180911 43 / 47

Verify Mutual Exclusion of this

Spin (./pan -E) shows no assertion is violated
⇒ mutual exclusion is verified

Still Spin (without -E) reports (invalid end state)
⇒ deadlock

FMSD: Concurrency /GU 180911 43 / 47

Deadlock Hunting

Invalid End State:

I A process does not finish at its end

I OK if it is not crucial to continue – add end lables (see end.pml)

I If it is crucial to continue:
Real deadlock

Address Deadlock with Spin:

I Verify to produce a failing run trail

I Simulate to see how the processes get to the interlock

I Fix the code (not using the end labels nor -E option)

FMSD: Concurrency /GU 180911 44 / 47

Deadlock Hunting

Invalid End State:

I A process does not finish at its end

I OK if it is not crucial to continue – add end lables (see end.pml)

I If it is crucial to continue:
Real deadlock

Address Deadlock with Spin:

I Verify to produce a failing run trail

I Simulate to see how the processes get to the interlock

I Fix the code (not using the end labels nor -E option)

FMSD: Concurrency /GU 180911 44 / 47

Atomicity against Deadlocks

solution:

checking and setting the flag in one atomic step

(demonstrate that in csGhost.pml)

atomic {

!Q_in_CS;

P_in_CS = true
}

FMSD: Concurrency /GU 180911 45 / 47

Atomicity against Deadlocks

solution:

checking and setting the flag in one atomic step

(demonstrate that in csGhost.pml)

atomic {

!Q_in_CS;

P_in_CS = true
}

FMSD: Concurrency /GU 180911 45 / 47

Atomicity against Deadlocks

solution:

checking and setting the flag in one atomic step

(demonstrate that in csGhost.pml)

atomic {

!Q_in_CS;

P_in_CS = true
}

FMSD: Concurrency /GU 180911 45 / 47

Variations of Critical Section Problem

I Verification artifacts:

I ghost variables (‘verification only’ variables)
I temporal logic (later in the course)

I Max n processes allowed in critical section
modeling possibilities include:

I counters instead of booleans
I semaphores (see demo)

I More fine grained exclusion conditions, e.g.

I several critical sections (Leidestraat in Amsterdam)
I writers exclude each other and readers

readers exclude writers, but not other readers
I FIFO queue semaphores, for fairly choosing processes to enter

I ... and many more

FMSD: Concurrency /GU 180911 46 / 47

Variations of Critical Section Problem

I Verification artifacts:
I ghost variables (‘verification only’ variables)

I temporal logic (later in the course)

I Max n processes allowed in critical section
modeling possibilities include:

I counters instead of booleans
I semaphores (see demo)

I More fine grained exclusion conditions, e.g.

I several critical sections (Leidestraat in Amsterdam)
I writers exclude each other and readers

readers exclude writers, but not other readers
I FIFO queue semaphores, for fairly choosing processes to enter

I ... and many more

FMSD: Concurrency /GU 180911 46 / 47

Variations of Critical Section Problem

I Verification artifacts:
I ghost variables (‘verification only’ variables)
I temporal logic (later in the course)

I Max n processes allowed in critical section
modeling possibilities include:

I counters instead of booleans
I semaphores (see demo)

I More fine grained exclusion conditions, e.g.

I several critical sections (Leidestraat in Amsterdam)
I writers exclude each other and readers

readers exclude writers, but not other readers
I FIFO queue semaphores, for fairly choosing processes to enter

I ... and many more

FMSD: Concurrency /GU 180911 46 / 47

Variations of Critical Section Problem

I Verification artifacts:
I ghost variables (‘verification only’ variables)
I temporal logic (later in the course)

I Max n processes allowed in critical section
modeling possibilities include:

I counters instead of booleans
I semaphores (see demo)

I More fine grained exclusion conditions, e.g.

I several critical sections (Leidestraat in Amsterdam)
I writers exclude each other and readers

readers exclude writers, but not other readers
I FIFO queue semaphores, for fairly choosing processes to enter

I ... and many more

FMSD: Concurrency /GU 180911 46 / 47

Variations of Critical Section Problem

I Verification artifacts:
I ghost variables (‘verification only’ variables)
I temporal logic (later in the course)

I Max n processes allowed in critical section
modeling possibilities include:
I counters instead of booleans

I semaphores (see demo)

I More fine grained exclusion conditions, e.g.

I several critical sections (Leidestraat in Amsterdam)
I writers exclude each other and readers

readers exclude writers, but not other readers
I FIFO queue semaphores, for fairly choosing processes to enter

I ... and many more

FMSD: Concurrency /GU 180911 46 / 47

Variations of Critical Section Problem

I Verification artifacts:
I ghost variables (‘verification only’ variables)
I temporal logic (later in the course)

I Max n processes allowed in critical section
modeling possibilities include:
I counters instead of booleans
I semaphores (see demo)

I More fine grained exclusion conditions, e.g.

I several critical sections (Leidestraat in Amsterdam)
I writers exclude each other and readers

readers exclude writers, but not other readers
I FIFO queue semaphores, for fairly choosing processes to enter

I ... and many more

FMSD: Concurrency /GU 180911 46 / 47

Variations of Critical Section Problem

I Verification artifacts:
I ghost variables (‘verification only’ variables)
I temporal logic (later in the course)

I Max n processes allowed in critical section
modeling possibilities include:
I counters instead of booleans
I semaphores (see demo)

I More fine grained exclusion conditions, e.g.

I several critical sections (Leidestraat in Amsterdam)
I writers exclude each other and readers

readers exclude writers, but not other readers
I FIFO queue semaphores, for fairly choosing processes to enter

I ... and many more

FMSD: Concurrency /GU 180911 46 / 47

Variations of Critical Section Problem

I Verification artifacts:
I ghost variables (‘verification only’ variables)
I temporal logic (later in the course)

I Max n processes allowed in critical section
modeling possibilities include:
I counters instead of booleans
I semaphores (see demo)

I More fine grained exclusion conditions, e.g.

I several critical sections (Leidestraat in Amsterdam)

I writers exclude each other and readers
readers exclude writers, but not other readers

I FIFO queue semaphores, for fairly choosing processes to enter

I ... and many more

FMSD: Concurrency /GU 180911 46 / 47

Variations of Critical Section Problem

I Verification artifacts:
I ghost variables (‘verification only’ variables)
I temporal logic (later in the course)

I Max n processes allowed in critical section
modeling possibilities include:
I counters instead of booleans
I semaphores (see demo)

I More fine grained exclusion conditions, e.g.

I several critical sections (Leidestraat in Amsterdam)
I writers exclude each other and readers

readers exclude writers, but not other readers

I FIFO queue semaphores, for fairly choosing processes to enter

I ... and many more

FMSD: Concurrency /GU 180911 46 / 47

Variations of Critical Section Problem

I Verification artifacts:
I ghost variables (‘verification only’ variables)
I temporal logic (later in the course)

I Max n processes allowed in critical section
modeling possibilities include:
I counters instead of booleans
I semaphores (see demo)

I More fine grained exclusion conditions, e.g.

I several critical sections (Leidestraat in Amsterdam)
I writers exclude each other and readers

readers exclude writers, but not other readers
I FIFO queue semaphores, for fairly choosing processes to enter

I ... and many more

FMSD: Concurrency /GU 180911 46 / 47

Variations of Critical Section Problem

I Verification artifacts:
I ghost variables (‘verification only’ variables)
I temporal logic (later in the course)

I Max n processes allowed in critical section
modeling possibilities include:
I counters instead of booleans
I semaphores (see demo)

I More fine grained exclusion conditions, e.g.

I several critical sections (Leidestraat in Amsterdam)
I writers exclude each other and readers

readers exclude writers, but not other readers
I FIFO queue semaphores, for fairly choosing processes to enter

I ... and many more

FMSD: Concurrency /GU 180911 46 / 47

Why Not Critical Section in Single Atomic Block?

I Does not carry over to variations (see previous slide).

I atomic only weakly atomic!

I d step excludes any nondeterminism!

I Most important: this misses the point.
We verify effectiveness of atomic,
not of the modeled protection mechanism!

Using atomic and d step too heavily, for too large blocks, can result in
well-behaved models, while modeling the wrong system.

FMSD: Concurrency /GU 180911 47 / 47

Why Not Critical Section in Single Atomic Block?

I Does not carry over to variations (see previous slide).

I atomic only weakly atomic!

I d step excludes any nondeterminism!

I Most important: this misses the point.
We verify effectiveness of atomic,
not of the modeled protection mechanism!

Using atomic and d step too heavily, for too large blocks, can result in
well-behaved models, while modeling the wrong system.

FMSD: Concurrency /GU 180911 47 / 47

Why Not Critical Section in Single Atomic Block?

I Does not carry over to variations (see previous slide).

I atomic only weakly atomic!

I d step excludes any nondeterminism!

I Most important: this misses the point.
We verify effectiveness of atomic,
not of the modeled protection mechanism!

Using atomic and d step too heavily, for too large blocks, can result in
well-behaved models, while modeling the wrong system.

FMSD: Concurrency /GU 180911 47 / 47

Why Not Critical Section in Single Atomic Block?

I Does not carry over to variations (see previous slide).

I atomic only weakly atomic!

I d step excludes any nondeterminism!

I Most important: this misses the point.
We verify effectiveness of atomic,
not of the modeled protection mechanism!

Using atomic and d step too heavily, for too large blocks, can result in
well-behaved models, while modeling the wrong system.

FMSD: Concurrency /GU 180911 47 / 47

	This Lecture
	Concurrent Processes in Promela
	Interference on Global Data
	Synchronization on Global Data
	Valid End States
	Atomicity
	The Critical Section Problem
	Mutual Exclusion
	Absence of Deadlock
	Variations
	atomic + d_step enough?

