
The OpenJML User Guide

DRAFT IN PROGRESS

David R. Cok
GrammaTech, Inc.

February 20, 2011

The most recent version of this document is available at
http://jmlspecs.sourceforge.net/OpenJMLUserGuide.pdf.

Copyright (c) 2010-2011 by David R. Cok. Permission is granted to make and distribute copies
of this document for educational or research purposes, provided that the copyright notice and
permission notice are preserved and acknowledgment is given in publications. Modified ver-
sions of the document may not be made. Incorporating this document within a larger collection,
or distributing it for commercial purposes, or including it as part or all of a product for sale is
allowed only by separate written permission from the author.

http://jmlspecs.sourceforge.net/OpenJMLUserGuide.pdf

Contents

I OpenJML 3

1 Introduction 4
1.1 JML . 4
1.2 OpenJDK . 4
1.3 OpenJML . 4
1.4 License . 4

2 The command-line tool 5
2.1 Installation and System Requirements . 5
2.2 Running OpenJML . 6

2.2.1 Files . 6
2.2.2 Specification files . 6
2.2.3 Java properties and the openjml.properties file 6
2.2.4 Options: Finding files and classes: class, source, and specs paths 8
2.2.5 Specification files . 9
2.2.6 Annotations and the runtime library . 9
2.2.7 Options: Information and debugging . 10
2.2.8 Options: JML tools . 10
2.2.9 Options relating to Java version . 10
2.2.10 Options: Java compiler options controlling output 11
2.2.11 Options related to Static Checking . 11
2.2.12 Options related to parsing and typechecking . 11
2.2.13 Options related to annotation processing . 11
2.2.14 Other JML Options . 11
2.2.15 Other Java Options . 12

3 The Eclipse Plug-in 13
3.1 Installation and System Requirements . 13
3.2 GUI Features . 13

4 OpenJML tools 14
4.1 Parsing and Type-checking . 14
4.2 Static Checking and Verification . 14
4.3 Runtime Assertion Checking . 14
4.4 Generating Documentation . 14
4.5 Generating Specification File Skeletons . 14
4.6 Generating Test Cases . 14

1

II JML 15

5 Summary of JML Features 17
5.1 JML Syntax . 17

5.1.1 Syntax of JML specifications . 17
5.1.2 Conditional JML specifications . 17
5.1.3 Finding specification files and the refine statement 18
5.1.4 JML specifications and Java annotations . 18
5.1.5 Model import statements . 18
5.1.6 Modifiers . 18
5.1.7 Method specification clauses . 18
5.1.8 Class specification clauses . 19
5.1.9 Statement specifications . 19
5.1.10 JML types . 19
5.1.11 JML operators . 19
5.1.12 JML informal comments . 19
5.1.13 redundantly suffixes . 19
5.1.14 nowarn lexical construct . 19

5.2 Interaction with Java features . 19
5.3 Other issues . 19

5.3.1 Interaction with JSR-308 . 19
5.3.2 Interaction with FindBugs . 19

2

Part I

OpenJML

3

Chapter 1

Introduction

1.1 JML
This section will be added later.

1.2 OpenJDK
This section will be added later.

1.3 OpenJML
This section will be added later.

1.4 License
The OpenJML command-line tool is built from OpenJDK, which is licensed under GPLv.2 (http://
openjdk.java.net/legal/). Hence OpenJML is correspondingly licensed.

The OpenJML plug-in is a pure Eclipse plug-in, and therefore is not required to be licensed under the
EPL. It does, however, call the command-line tool (in a Java sort of way), so it may be considered to be
GPL v.2 as well.

In any case, the source code for both tools is available as a sourceforge project at http://jmlspecs.
svn.sourceforge.net/viewvc/jmlspecs/OpenJML/.

4

http://openjdk.java.net/legal/
http://openjdk.java.net/legal/
http://jmlspecs.svn.sourceforge.net/viewvc/jmlspecs/OpenJML/
http://jmlspecs.svn.sourceforge.net/viewvc/jmlspecs/OpenJML/

Chapter 2

The command-line tool

2.1 Installation and System Requirements
The command-line tool is supplied as a .tar.gz file, downloadable from http://jmlspecs.sourceforge.

net/. Download the file to a directory of your choice and unzip and untar it in place. It contains the fol-
lowing files:

• openjml.jar - the main jar file for the application
• jmlruntime.jar - a library needed on the classpath when running OpenJML on Java files
• jmlspecs.jar - a library containing specification files
• openjml-template.properties - a sample file, which should be copied and renamed openjml.properties,

containing definitions of properties whose values depend on your local system
• LICENSE.rtf - a copy of the modified GPL license that applies to OpenJDK and OpenJML
• epl-v10.html - a copy of the EPL license
• OpenJMLUserGuide.pdf - this document

You can run OpenJML in a Java 1.7 JRE or, with a bit of work-around, in a Java 1.6 JRE. 1

Java 1.7 Java 1.7 is not quite released, but you can obtain a version suitable for running OpenJML from
these locations:

• for Windows and Linux: http://dlc.sun.com.edgesuite.net/jdk7/binaries/index.html.
For testing on Windows/Cygwin, I have been using build 103, from July 2010, which you can
download from http://jmlspecs.sourceforge.net/openjdk-7-ea-src-b103-29_jul_2010.

zip

• for MacOS X: http://formalmethods.insttech.washington.edu/software/openjml.html

Note that the 1.7 JRE must be the current JRE in the system or the shell in which you run OpenJML.
You should also be sure that the jmlruntime.jar and jmlspecs.jar files remain in the same folder

as the openjml.jar file.

Java 1.6 If you use Java 1.6, you need to add the openjml.jar library at the beginning of the boot-
classpath, as shown in the next section.

1This situation appears to result from how the Java class loader handles static fields, such as Enum constants.

5

http://jmlspecs.sourceforge.net/
http://jmlspecs.sourceforge.net/
http://dlc.sun.com.edgesuite.net/jdk7/binaries/index.html
http://jmlspecs.sourceforge.net/openjdk-7-ea-src-b103-29_jul_2010.zip
http://jmlspecs.sourceforge.net/openjdk-7-ea-src-b103-29_jul_2010.zip
http://formalmethods.insttech.washington.edu/software/openjml.html

2.2 Running OpenJML
To run OpenJML using a Java 1.7 VM, use this command line. Here $OpenJML designates the folder in
which the openjml.jar file resides.

java -jar $OPENJML/openjml.jar <options> <files>

Here <files> and <options> stand for text described below.
The following command is currently a viable alternative as well.

java -cp $OPENJML/openjml.jar org.jmlspecs.openjml.Main <options> <files>

The valid options are listed in Table 2.1 and are described in subsections below.
For a 1.6 VM (on Windows/Cygwin only), use this command-line:

java -Xbootclasspath/p:$OPENJML/openjmlboot.jar -jar $OPENJML/openjml.jar

<options> <files>

2.2.1 Files
In the command templates above, <files> refers to a list of .java files. Each one must be specified with
an absolute file system path or with a path relative to the current working directory (in particular, not with
respect to the classpath or the sourcepath).

You can also specify directories on the command line using the -dir and -dirs options. The -dir
<directory> option indicates that the <directory> value (an absolute or relative path to a folder) should
be understood as a folder; all .java or specification files within the folder are including as if they were
individually listed on the command-line. The -dirs option indicates that each one of the remaining
command-line arguments is interpreted as either a source file (if it is a file with a .java suffix) or as a
directory (if it is a directory) whose contents are processed as if listed on the command-line. Note that
the -dirs option must be the last option.

TBD: specification files - are they processed as well?

2.2.2 Specification files
TBD : to be written

2.2.3 Java properties and the openjml.properties file
OpenJML uses a number of properties that may be defined in the environment; these properties are
typically characteristics of the local environment and are not common across different users or different
installations. An example is the the file system location of a particular solver.

The tool looks for a file named openjml.properties in several locations. It loads the properties it
finds in each of these, in order, so later definitions will supplant earlier ones.

• System properties, including those defined with -D options on the command-line
• On the system classpath
• In the users home directory (the value of the Java property user.home

• In the current working directory (the value of the Java property user.dir

The properties that are currently recognized are these:

• openjml.defaultProver - the value is the name of the prover to use by default
• openjml.prover.<name>, where <name> is the name of a prover, and the value is the file

system path to the executable to be invoked for that prover

6

Options specific to JML
– no more options
-check typecheck only

(-command check)
-command <action> which action to do:

check esc rac compile
-compile
-counterexample show a counterexample

for failed static checks
-crossRefAssociatedInfo
-dir <dir> argument is a folder of

files
-dirs remaining arguments

are folders or files
-esc do static chacking

(-command esc)
-java use the native OpenJDK

tool
-jmldebug very verbose output (in-

cludes -progress)
-jmlverbose JML-specific verbose

output
-keys
-method
-noCheckSpecsPath ignore non-existent

specs path entries
-noPurityCheck do not check for purity
-noInternalSpecs do not add internal

specs library to spec-
spath

-noInternalRuntime do not add internal run-
time library to classpath

-noJML ignore JML constructs
-nonnullByDefault values are not null by

default
-nullableByDefault values may be null by

default
-progress
-rac compile runtime asser-

tion checks (-command
rac)

-roots
-showNotImplemented warn if feature not im-

plemented
-specspath location of specs files
-stopIfParseErrors stop if there are any

parse errors
-subexpressions show subexpression

detail for failed static
checks

-trace show a trace for failed
static checks

Options inherited from Java
-Akey
-bootclasspath <path> See Java documenta-

tion.
-classpath <path> location of class files
-cp <path> location of class files
-d <directory> location of output class

files
-encoding <encoding>
-endorsedirs <dirs>
-extdirs <dirs>
-deprecation
-g
-help output help information
-implicit
-J<flag>
-nowarn show only errors, no

warnings
-proc
-processor <classes>
-processorpath <path> where to find annotation

processors
-s <directory> location of output

source files
-source <release> the Java version of

source files
-sourcepath <path> location of source files
-target <release> the Java version of the

output class files
-X Java non-standard ex-

tensions
-verbose verbose output
-version output (OpenJML) ver-

sion
-Werror treat warnings as errors

Table 2.1: OpenJML options. See the text for more detail on each option.

7

The distribution includes a file named openjml-template.properties that contains stubs for all
the recognized options. You should copy that file, rename it as openjml.properties, and edit it to
reflect your system configuration. (Do not commit your system’s openjml.properties file into the
OpenJML shared SVN repository.)

2.2.4 Options: Finding files and classes: class, source, and specs paths
A common source of confusion is the various different paths used to find files, specs and classes in
OpenJML. OpenJML is a Java application and thus a classpath is used to find the classes that constitute
the application; but OpenJML is also a tool that processes Java files, so it uses a (different) classpath
to find the files that it is processing. As is the case for other Java applications, a <path> contains a
sequence of individual paths to folders or jar files, separated by the path separator character (a semicolon
on Windows systems and a colon on Unix and MacOSX systems). You should distinguish the following:

• the classpath used to run the application: specified by one of

– the CLASSPATH environment variable
– the .jar file given with the java -jar form of the command is used
– the value for the -classpath (equivalently, -cp) option when OpenJML is run with the java
-cp openjml.jar org.jmlspecs.openjml.Main command

This classpath is not of much concern to OpenJML, but is the classpath that Java users will be
familiar with. The value is implicitly given in the -jar form of the command. The application
classpath is explicitly given in the alternate form of the command, and it may be omitted; if it is
omitted, the value of the system property CLASSPATH is used and it must contain the openjml.jar
library.

• the classpath used by OpenJML. This classpath determines where OpenJML will find .class files
for classes referenced by the .java files it is processing. The classpath is specified by

-classpath <path>
or

-cp <path>
after the executable is named on the commandline. That is,

java -jar openmjml.jar -cp <openjml-classpath> ...

or

java -cp openjml.jar org.jmlspecs.openjml.Main -cp <openjml-classpath> ...

If the OpenJML classpath is not specified, its value is obtained from the application classpath.

• the OpenJML sourcepath - The sourcepath is used by OpenJML as the list of locations in which
to find .java files that are referenced by the files being processed. For example, if a file on
the command-line, say T.java, refers to another class, say class U, that is not listed on the
command-line, then U must be found. OpenJML (just as is done by the Java compiler) will look
for a source file for U in the sourcepath and a class file for U in the classpath. If both are found then
TBD.

The OpenJML sourcepath is specified by the -sourcepath <path> option. If it is not specified,
the value for the sourcepath is taken to be the same as the OpenJML classpath.

In fact, the sourcepath is rarely used. Users often will specify a classpath containing both .class

and .java files; by not specifying a sourcepath, the same path is used for both .java and .class

files. This is simpler to write, but does mean that the application must search through all source
and binary directories for any particular source or binary file.

8

• the OpenJML specspath - The specspath tells OpenJML where to look for specification files. It is
specified with the -spacspath <path> option. If it is not specified, the value for the specspath is
the same as the value for the sourcepath. In addition, by default, the specspath has added to it an
internal library of specifications. These are the existing (and incomplete) specifications of the Java
standard library classes.

The addition of the Java specifications to the specspath can be disabled by using the -noInternalSpecs
option. For example. if you have your own set of specification files that you want to use instead of
the internal library, then you should use the -noInternalSpecs option and a -specspath option
with a path that includes your own specification library.

Note also that often source (.java) files contain specifications as well. Thus, if you are specifying
a specspath yourself, you should be sure to include directories containing source files in the spec-
spath; this rule also includes the .java files that appear on the command-line: they also should
appear on the specspath.

TBD - describe what happens if the above guidelines are not followed. (Can we make this more
user friendly).

The -noInternalSpecs option. As described above, this option turns off the automatic adding of
the internal specifications library to the specspath. If you use this option, it is your responsibility to
provide an alternate specifications library for the standard Java class library. If you do not you will likely
see a large number of static checking warnings when you use Extended Static Checking to check the
implementation code against the specifications.

The internal specifications are written for programs that conform to Java 1.7. [TBD - change this to
adhere to the -source option?] [TBD - what about the specs in jmlspecs for different source levels.]

2.2.5 Specification files
JML specifications for Java classes (either source or binary) are written in files with a .jml suffix or
are written directly in the source .java file. When OpenJML needs specifications for a given class, it
looks for a .jml file on the specspath. If one is not found, OpenJML then looks for a .java file on the
specspath. Note that this rule requires that source files (that have specifications you want to use) must be
listed on the specspath. Note also that there need not be a source file; a .jml file can be (and often is)
used to provide specifications for class files.

Previous versions of JML had a more complicated scheme for constructing specifications for a class
involving refinements, multiple specification files, and various prefixes. This complicated process is now
deprecated and no longer supported.

[TBD: some systems might find the first .java or .jml file on the specspath and use it, even if there
were a .jml file later.] [TBD: Actually, as of this date, the old mechanism is still in place and the new
one still in progress.]

2.2.6 Annotations and the runtime library
JML uses Java annotations as introduced in Java 1.6. Those annotation classes are in the package
org.jmlspecs.annotation. In order for files using these annotations to be processed by Java, the
annotation classes must be on the classpath. They may also be required when a compiled Java program
that uses such annotations is executed. In addition, running a program that has JML runtime assertion
checks compiled in will require the presence of runtime classes that define utility functions used by the
assertion checking code.

Both the annotation classes and the runtime checking classes are provided in a library named jmlruntime.jar.
The distribution of OpenJML contains this library, as well as containing a version of the library within
openjml.jar. The OpenJML is applied to a set of classes, by default it finds a version of the runtime
classes and appends the location of the runtime classes to the classpath.

9

You can prevent OpenJML from automatically adding jmlruntime.jar to the classpath with the
option -noInternalRuntime. If you use this option, then you will have to supply your own annotation
classes and (if using Runtime Assertion Checking) runtime utility classes on the classpath. You may wish
to do this, for example, if you have newer versions of the annotation classes that you are experimenting
with. You could simply put them on the classpath, since they would be in front of the automatically added
classes and used in favor of default versions; however, if you want to be sure that the default version are
not present, use the -noInternalRuntime option.

The symptom that no runtime classes are being found at all is error messages that the org.jmlspecs.annotation
package is not found.

2.2.7 Options: Information and debugging
• -help : prints out help information about the command-line options

• -version : prints out the version of the OpenJML tool

• -verbose : prints out verbose information about the Java processing

• -jmlverbose : prints out verbose information about the JML processing (includes -verbose)

• -progress :

• -jmldebug : prints out (voluminous) debugging information

2.2.8 Options: JML tools
• -command <tool> : initiates the given function; the value of <tool> may be one of check, ese,
rac, TBD. The default is to use the OpenJML tool to do only typechecking of Java and JML in the
source files.

• -check : causes OpenJML to do only type-checking of the Java and JML in the input files

• -compile

• -esc : causes OpenJML to do (type-checking and) static checking of the JML specifications against
the implementations in the input files

• -rac

• -java : causes OpenJML to ignore all OpenJML extensions and use only the core OpenJDK func-
tionality, so the tool should run precisely like the OpenJDK javac tool

• -noJML : causes OpenJML to use its extensions but to ignore all JML constructs (TBD - does this
still recognize -check, -compile?)

TBD: jmldoc?

2.2.9 Options relating to Java version
• -source <level> : this option specifies the Java version of the source files, with values of 1.4,
1.5, 1.6, 1.7. This controls whether some syntax features (e.g. annotations, extended for-loops,
autoboxing, enums) are permitted. The default is the most recent version of Java, in this case 1.7.
Note that the classpath should include the Java library classes that correspond to the source version
being used.

• -target <level> : this option specifies the Java version of the output class files

10

2.2.10 Options: Java compiler options controlling output
• -d <dir> : specifies the directory in which output class files are placed

• -s <dir> : specifies the directory in which output source files are placed (such as those produced
by annotation processors)

2.2.11 Options related to Static Checking
• -counterexample

• -trace

• -subexpressions

• -method

2.2.12 Options related to parsing and typechecking
• -Werror

• -nowarn

• -stopIfParseError

• -noCheckSpecsPath

• -noPurityCheck

• -nonnullbydefault

• -nullablebydefault

• -keys

2.2.13 Options related to annotation processing
• -proc

• -processor

• -processorpath

2.2.14 Other JML Options
• -showNotImplemented

• -crossRefAssociatedInfo

• -roots

11

2.2.15 Other Java Options
These options are unchanged from their meaning and use in the javac tool:

• -Akey
• -J
• -X
• -implicit
• -bootclasspath
• -deprecation
• -encoding
• -endorsedirs
• -extdirs
• -g

This section will be completed later.

12

Chapter 3

The Eclipse Plug-in

Since OpenJML operates on Java files, it is natural that it be integrated into the Eclipse IDE. There is
a conventional Eclipse plug-in that encapsulates the OpenJML command-line tool and integrates it with
the Eclipse Java development environment.

3.1 Installation and System Requirements
Your system must have the following:

• A Java 1.7 JRE as described in section 2.2 (there is no 1.6 work-around for the plug-in). This
must be the JRE in use in the environment in which Eclipse is invoked. If you start Eclipse by a
command in a shell, it is straightforward to make sure that the correct Java JRE is defined in that
shell. However, if you start Eclipse by, for example, double-clicking a desktop icon, then you must
ensure that the Java 1.7 JRE is set by the system at startup.

• Eclipse 3.6 or later

Installation of the plug-in follows the conventional Eclipse procedure.

• Invoke the "Install New Software" dialog under the Eclipse "Help" menubar item.

• "Add" a new location, giving the URL http://jmlspecs.sourceforge.net/openjml-updatesite

and some name of your choice (e.g. OpenJML).

• Select the "OpenJML" category and push "Next"

• Proceed through the rest of the wizard dialogs to install OpenJML.

• Restart Eclipse when asked to obtain full functionality.

If the plug-in is successfully installed, a yellow coffee cup (the JML icon) will appear in the menubar
(along with other menubar items). The installation will fail (without obvious error messages), if the
underlying Java VM is not a suitable Java 1.7 VM.

3.2 GUI Features
This section will be added later.

13

http://jmlspecs.sourceforge.net/openjml-updatesite

Chapter 4

OpenJML tools

4.1 Parsing and Type-checking
This section will be added later.

4.2 Static Checking and Verification
This section will be added later.

4.3 Runtime Assertion Checking
This section will be added later.

4.4 Generating Documentation
This section will be added later.

4.5 Generating Specification File Skeletons
This section will be added later.

4.6 Generating Test Cases
This section will be added later.

14

Part II

JML

15

The definition of the Java Modeling Language is given in the JML Reference Manual[?]. This docu-
ment does not repeat that definition in detail. However, it is

16

Chapter 5

Summary of JML Features

The definition of the Java Modeling Language is contained in the reference manual.[?] That definition
will not be repeated here. However, the following sections contain comments about JML as they relate
to the implementation within OpenJML.

5.1 JML Syntax

5.1.1 Syntax of JML specifications
JML specifications are contained in specially formatted Java comments: a JML specification includes
everything between either (a) an opening /*@ and closing */ or (b) an opening //@ and the next line
ending character (\n or \r) that is not within a string or character literal.

Such comments that occur within the body of a class or interface definition are considered to be a
specification of the class, a field, or a method, depending on the kind of specification clause it is. JML
specifications may also occur in the body of a method.

Obsolete syntax. In previous versions of JML, JML specifications could be placed within javadoc
comments. Such specifications are no longer standard JML and are not supported by OpenJML.

5.1.2 Conditional JML specifications
JML has a mechanism for conditional specifications, based on a system of keys. A key is a Java identifier
(alphanumerics, including the underscore character, and beginning with a non-digit). A conditional JML
comment is guarded by one or more positive or negative keys (or both). The keys are placed just before
the @character that is part of the opening sequence of the JML comment (the //@ or the /*@). Each key is
preceded by a ’+’ or a ’-’ sign, to indicate whether it is a positive or negative key, respectively. No white-
space is allowed. If there is white-space anywhere between the initial // or /* and the first @character, the
comment will appear to be a normal Java comment and will be silently ignored.

The keys are interpreted as follows. Each tool that processes the Java+JML input will have a means
(e.g. by command-line options) to specify the set of keys that are enabled.

• If the JML annotation has no keys, the annotation is always processed.

• If there are only positive keys, the annotation is processed only if at least one of the keys is enabled.

• If there are only negative keys, the annotation is processed unless one of the keys is enabled.

• If there are both positive and negative keys, the annotation is processed only if (a) at least one of
the positive keys is enabled AND (b) none of the negative keys are enabled.

17

JML previously defined one conditional annotation: those that began with /*+@ or //+@. ESC/Java2
also defined /*-@ and //-@. Both of these are now deprecated. OpenJML does have an option to enable
the +-style comments.

The particular keys do not have any defined meaning. OpenJML implicitly enables the ESC key
when it is performing ESC static checking; it implicitly enables the RAC key when it is performing
Runtime-Assertion-Checking. Thus, for example, one can turn off a non-executable assert statement for
RAC-processing by writing //-RAC@ assert ...

5.1.3 Finding specification files and the refine statement
JML allows specifications to be placed directly in the .java files that contain the implementation of meth-
ods and classes. Indeed, specifications such as assert statements or loop invariants are necessarily placed
directly in a method body. Other specifications, such as class invariants and method pre- and post-
conditions, may be placed in auxiliary files. For classes which are only present as .class files and not as
.java files, the auxiliary file is a necessity.

Current JML allows one such auxiliary file. It is similar to the corresponding .java file except that

• it has a .jml suffix
• it contains no method bodies (method declarations are terminated with semi-colons, as if they were

abstract)

The .jml file is in the same package as the corresponding .java file and has the same name, except for the
suffix. If there is no source file, then there is a .jml file for each class that has a specification. [TBD -
what about non public classes]

This section will be added later.

Obsolete syntax. The refine and refines statements are no longer recognized. The previous (com-
plicated) method of finding specification files and merging the specifications from multiple files is also no
longer implemented. The only specification file suffix allowed is .jml; the others — .spec, .refines-java,
.refines-spec, .refines-jml — are no longer implemented.

In addition, the .jml file is sought before seeking the .java file; if a .jml file is found anywhere in
the specs path, then any specifications in the .java file are ignored. This is a different search algorithm
than was previously used.

5.1.4 JML specifications and Java annotations
This section will be added later.

5.1.5 Model import statements
This section will be added later.

5.1.6 Modifiers
This section will be added later.

- note elimination of weakly

5.1.7 Method specification clauses
This section will be added later.

18

5.1.8 Class specification clauses
This section will be added later.

5.1.9 Statement specifications
This section will be added later.

5.1.10 JML types
This section will be added later.

5.1.11 JML operators
This section will be added later.

5.1.12 JML informal comments
This section will be added later.

5.1.13 redundantly suffixes
This section will be added later.

5.1.14 nowarn lexical construct
This section will be added later.

5.2 Interaction with Java features
This section will be added later.

5.3 Other issues

5.3.1 Interaction with JSR-308
This section will be added later.

This section will be added later.

5.3.2 Interaction with FindBugs
This section will be added later.

19

An index will be added later.

20

	I OpenJML
	Introduction
	JML
	OpenJDK
	OpenJML
	License

	The command-line tool
	Installation and System Requirements
	Running OpenJML
	Files
	Specification files
	Java properties and the openjml.properties file
	Options: Finding files and classes: class, source, and specs paths
	Specification files
	Annotations and the runtime library
	Options: Information and debugging
	Options: JML tools
	Options relating to Java version
	Options: Java compiler options controlling output
	Options related to Static Checking
	Options related to parsing and typechecking
	Options related to annotation processing
	Other JML Options
	Other Java Options

	The Eclipse Plug-in
	Installation and System Requirements
	GUI Features

	OpenJML tools
	Parsing and Type-checking
	Static Checking and Verification
	Runtime Assertion Checking
	Generating Documentation
	Generating Specification File Skeletons
	Generating Test Cases

	II JML
	Summary of JML Features
	JML Syntax
	Syntax of JML specifications
	Conditional JML specifications
	Finding specification files and the refine statement
	JML specifications and Java annotations
	Model import statements
	Modifiers
	Method specification clauses
	Class specification clauses
	Statement specifications
	JML types
	JML operators
	JML informal comments
	redundantly suffixes
	nowarn lexical construct

	Interaction with Java features
	Other issues
	Interaction with JSR-308
	Interaction with FindBugs

