Formal Methods for Software Development Model Checking with Temporal Logic

Wolfgang Ahrendt

21st September 2018

Model Checking

Check whether a formula is valid in all runs of a transition system.

Given a transition system \mathcal{T} (e.g., derived from a Prometa program).

Verification task: is the LTL formula ϕ satisfied in all traces of \mathcal{T} , i.e.,

$$\mathcal{T} \models \phi$$
 ?

$$\mathcal{T} \models \phi$$
 ?

1. Construct generalised Büchi automaton $\mathcal{GB}_{\neg\phi}$ for negation of ϕ

$$\mathcal{T} \models \phi$$
 ?

- 1. Construct generalised Büchi automaton $\mathcal{GB}_{\neg \phi}$ for negation of ϕ
- 2. Construct an equivalent normal Büchi automaton $\mathcal{B}_{\neg\phi}$, i.e.,

$$\mathcal{L}^{\omega}(\mathcal{B}_{
eg\phi}) = \mathcal{L}^{\omega}(\mathcal{G}\mathcal{B}_{
eg\phi})$$

$$\mathcal{T} \models \phi$$
 ?

- 1. Construct generalised Büchi automaton $\mathcal{GB}_{\neg \phi}$ for negation of ϕ
- 2. Construct an equivalent normal Büchi automaton $\mathcal{B}_{\neg\phi}$, i.e.,

$$\mathcal{L}^{\omega}(\mathcal{B}_{
eg\phi}) = \mathcal{L}^{\omega}(\mathcal{G}\mathcal{B}_{
eg\phi})$$

- **3.** Construct product $\mathcal{T} \otimes \mathcal{B}_{\neg \phi}$
- **4.** Analyse whether $\mathcal{T} \otimes \mathcal{B}_{\neg \phi}$ has a

path π looping through an 'accepting node'

$$\mathcal{T} \models \phi$$
 ?

- 1. Construct generalised Büchi automaton $\mathcal{GB}_{\neg \phi}$ for negation of ϕ
- 2. Construct an equivalent normal Büchi automaton $\mathcal{B}_{\neg \phi}$, i.e.,

$$\mathcal{L}^{\omega}(\mathcal{B}_{\neg\phi}) = \mathcal{L}^{\omega}(\mathcal{G}\mathcal{B}_{\neg\phi})$$

- **3.** Construct product $\mathcal{T} \otimes \mathcal{B}_{\neg \phi}$
- **4.** Analyse whether $\mathcal{T} \otimes \mathcal{B}_{\neg \phi}$ has a

path π looping through an 'accepting node'

5. If such a π is found, then

$$\mathcal{T}
ot\models \phi$$
 and σ_{π} is a counter example.

$$\mathcal{T} \models \phi$$
 ?

- 1. Construct generalised Büchi automaton $\mathcal{GB}_{\neg \phi}$ for negation of ϕ
- 2. Construct an equivalent normal Büchi automaton $\mathcal{B}_{\neg \phi}$, i.e.,

$$\mathcal{L}^{\omega}(\mathcal{B}_{\neg\phi}) = \mathcal{L}^{\omega}(\mathcal{G}\mathcal{B}_{\neg\phi})$$

- **3.** Construct product $\mathcal{T} \otimes \mathcal{B}_{\neg \phi}$
- **4.** Analyse whether $\mathcal{T} \otimes \mathcal{B}_{\neg \phi}$ has a

path π looping through an 'accepting node'

5. If such a π is found, then

$$\mathcal{T}
ot\models \phi$$
 and σ_{π} is a counter example.

If no such π is found, then

$$\mathcal{T} \models \phi$$

When What?

this lecture

3.–5. product of transition system and Büchi automaton (construction and analysis)

When What?

this lecture

3.–5. product of transition system and Büchi automaton (construction and analysis)

next lecture

- 1. translating LTL into generalised Büchi automata
- 2. generalised Büchi automata and their normalisation

A model checking graph is a directed graph with initial and accepting nodes.

Definition (Model Checking Graph)

A model checking graph $(N, \rightarrow, N_0, N_a)$ is composed of:

- ► finite, non-empty set of nodes *N*
- ▶ an 'arrow' relation $\rightarrow \subseteq N \times N$
- ▶ a non-empty set of initial nodes $N_0 \subseteq N$
- ▶ a set of accepting nodes $N_a \subseteq N$

In the following, we assume without further mention:

1. transition systems without terminal states:

$$\{s' \in S | s \rightarrow s'\} \neq \emptyset$$
 for all states $s \in S$

In the following, we assume without further mention:

1. transition systems without terminal states:

$$\{s' \in S | s \rightarrow s'\} \neq \emptyset$$
 for all states $s \in S$

2. total Büchi automata:

$$\delta(q, a) \neq \{\}$$
 for all $q \in Q$ and $a \in \Sigma$

In the following, we assume without further mention:

- 1. transition systems without terminal states:
 - $\{s' \in S | s \to s'\} \neq \emptyset$ for all states $s \in S$
- 2. total Büchi automata: $\delta(q, a) \neq \{\}$ for all $q \in Q$ and $a \in \Sigma$

Can always be achieved by adding 'trap states' or 'trap locations', resp.

We assume a set of atomic propostions AP.

Definition (Product of Transition System and Büchi Automaton)

Let $\mathcal{T} = (S, \rightarrow, S_o, L)$ be a transition system over AP and $\mathcal{B} = (Q, \delta, Q_0, F)$ be a Büchi automaton over the alphabet 2^{AP} . Then, $\mathcal{T} \otimes \mathcal{B}$ is the following model checking graph:

$$\mathcal{T}\otimes\mathcal{B}=({\color{red}S}\times{\color{red}Q},\rightarrow',N_0,N_a)$$

where:

 $\blacktriangleright \langle s,q \rangle \rightarrow' \langle s',q' \rangle$ iff $s \rightarrow s'$ and $(q,L(s'),q') \in \delta$

We assume a set of atomic propostions AP.

Definition (Product of Transition System and Büchi Automaton)

Let $\mathcal{T} = (S, \rightarrow, S_o, L)$ be a transition system over AP and $\mathcal{B} = (Q, \delta, Q_0, F)$ be a Büchi automaton over the alphabet 2^{AP} . Then, $\mathcal{T} \otimes \mathcal{B}$ is the following model checking graph:

$$\mathcal{T} \otimes \mathcal{B} = (S \times Q, \rightarrow', N_0, N_a)$$

where:

- $\blacktriangleright \langle s,q \rangle \rightarrow' \langle s',q' \rangle$ iff $s \rightarrow s'$ and $(q,L(s'),q') \in \delta$
- ► $N_0 = \{ \langle s_0, q \rangle | s_0 \in S_0 \text{ and } \exists q_0 \in Q_0.(q_0, L(s_0), q) \in \delta \}$

We assume a set of atomic propostions AP.

Definition (Product of Transition System and Büchi Automaton)

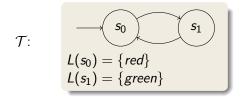
Let $\mathcal{T} = (S, \rightarrow, S_o, L)$ be a transition system over AP and $\mathcal{B} = (Q, \delta, Q_0, F)$ be a Büchi automaton over the alphabet 2^{AP} . Then, $\mathcal{T} \otimes \mathcal{B}$ is the following model checking graph:

$$\mathcal{T} \otimes \mathcal{B} = ({\color{red} S} imes {\color{red} Q}, {\rightarrow'}, {\color{blue} N_0}, {\color{blue} N_a})$$

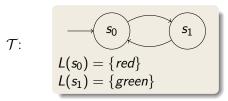
where:

- $\blacktriangleright \langle s,q \rangle \rightarrow' \langle s',q' \rangle$ iff $s \rightarrow s'$ and $(q,L(s'),q') \in \delta$
- ► $N_0 = \{ \langle s_0, q \rangle | s_0 \in S_0 \text{ and } \exists q_0 \in Q_0.(q_0, L(s_0), q) \in \delta \}$
- $ightharpoonup N_a = \{\langle s, q \rangle | q \in F\}$

Assume $AP = \{red, green\}$



Assume $AP = \{red, green\}$



We want to show "infinitely often green": $\phi \equiv \Box \Diamond$ green

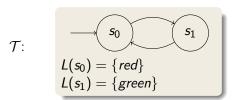
Assume $AP = \{red, green\}$



We want to show "infinitely often green": $\phi \equiv \Box \Diamond$ green

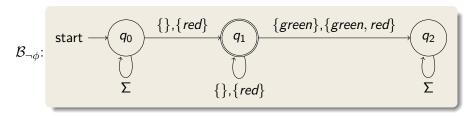
Construct BA $\mathcal{B}_{\neg \phi}$ for negation: $\neg \phi \equiv \neg \Box \Diamond green \equiv \Diamond \Box \neg green$

Assume $AP = \{red, green\}$

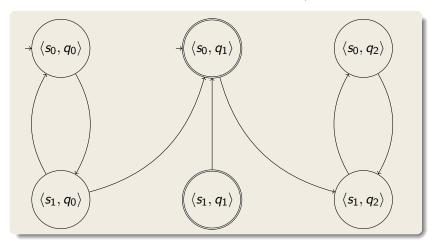


We want to show "infinitely often green": $\phi \equiv \Box \Diamond$ green

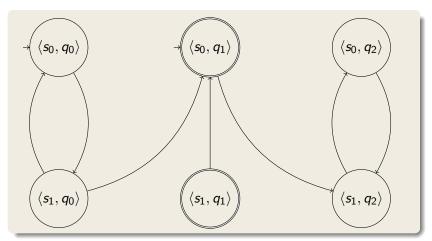
Construct BA $\mathcal{B}_{\neg \phi}$ for negation: $\neg \phi \equiv \neg \Box \Diamond green \equiv \Diamond \Box \neg green$



Model checking graph $\mathcal{T} \otimes \mathcal{B}_{\neg \phi}$:

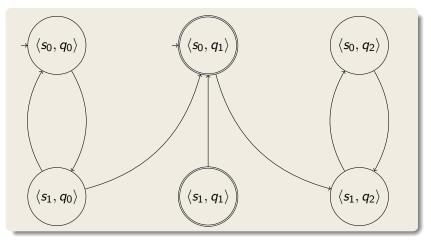


Model checking graph $\mathcal{T} \otimes \mathcal{B}_{\neg \phi}$:



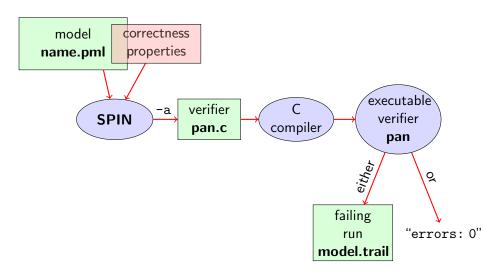
has no path looping throug an accepting node!

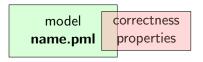
Model checking graph $\mathcal{T} \otimes \mathcal{B}_{\neg \phi}$:



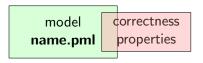
has no path looping throug an accepting node!

Model Checking with Spin





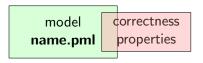
Correctness properties can be stated within, or outside, the model.



Correctness properties can be stated within, or outside, the model.

stating properties within model using

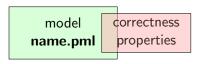
assertion statements



Correctness properties can be stated within, or outside, the model.

stating properties within model using

- assertion statements
- meta labels
 - ▶ end labels ✓
 - accept labels
 - progress labels



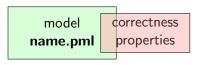
Correctness properties can be stated within, or outside, the model.

stating properties within model using

- assertion statements
- meta labels
 - ▶ end labels ✓
 - accept labels
 - progress labels

stating properties outside model using

- never claims
- temporal logic formulas



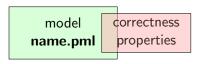
Correctness properties can be stated within, or outside, the model.

stating properties within model using

- assertion statements
- meta labels
 - ▶ end labels ✓
 - accept labels
 - progress labels

stating properties outside model using

- never claims
- temporal logic formulas (today's main topic)



Correctness properties can be stated within, or outside, the model.

stating properties within model using

- assertion statements
- meta labels
 - ▶ end labels ✓
 - accept labels (briefly)
 - progress labels

stating properties outside model using

- never claims (briefly)
- temporal logic formulas (today's main topic)

Preliminaries

- 1. Accept labels in Prometa \leftrightarrow Büchi automata
- 2. Fairness

Preliminaries 1: Acceptance Cycles

Definition (Accept Location)

A location marked with an accept label of the form "acceptxxx:" is called an accept location.

Preliminaries 1: Acceptance Cycles

Definition (Accept Location)

A location marked with an accept label of the form "acceptxxx:" is called an accept location.

Accept locations can be used to specify cyclic behavior

Definition (Acceptance Cycle)

A run which infinitely often passes through an accept location is called an acceptance cycle.

Acceptance cycles are mainly used in never claims (see below), to define (undesired) infinite behavior

Preliminaries 2: Fairness

Does this model terminate in each run?

Simulate: start/fair.pml

Preliminaries 2: Fairness

Does this model terminate in each run?

Simulate: start/fair.pml

Termination guaranteed only if scheduling is (weakly) fair!

Preliminaries 2: Fairness

Does this model terminate in each run?

| Simulate: start/fair.pml

Termination guaranteed only if scheduling is (weakly) fair!

Definition (Weak Fairness)

A run is called weakly fair iff the following holds: each continuously executable statement is executed eventually.

Model Checking of Temporal Properties

Many correctness properties not expressible by assertions

- ► All properties that involve state changes
- ► Temporal logic expressive enough to characterize many (but not all) Linear Time properties

In this course: "temporal logic" synonymous with "linear temporal logic"

Today: model checking of properties formulated in temporal logic

Locality of Assertions

Assertions talk only about the state at their location in the code

Locality of Assertions

Assertions talk only about the state at their location in the code

Example

Mutual exclusion enforced by adding assertion to each critical section

```
critical++;
assert( critical <= 1 );
critical--;</pre>
```

Locality of Assertions

Assertions talk only about the state at their location in the code

Example

Mutual exclusion enforced by adding assertion to each critical section

```
critical++;
assert( critical <= 1 );
critical--;</pre>
```

Drawbacks

- ▶ No separation of concerns (model vs. correctness property)
- ► Changing assertions is error prone (easily out of sync)
- Easy to forget assertions: correctness property might be violated at unexpected locations

Locality of Assertions

Assertions talk only about the state at their location in the code

Example

Mutual exclusion enforced by adding assertion to each critical section

```
critical++;
assert( critical <= 1 );
critical--;</pre>
```

Drawbacks

- No separation of concerns (model vs. correctness property)
- Changing assertions is error prone (easily out of sync)
- Easy to forget assertions: correctness property might be violated at unexpected locations
- ► Many interesting properties not expressible via assertions

Examples of properties where assertions are suboptimal (too local):

Examples of properties where assertions are suboptimal (too local):

Mutual Exclusion

"critical <= 1 holds throughout each run"

Examples of properties where assertions are suboptimal (too local):

Mutual Exclusion

"critical <= 1 holds throughout each run"

Array Index within Bounds (given array a of length len)

"0 <= i <= len-1 holds throughout each run"

Examples of properties where assertions are suboptimal (too local):

Mutual Exclusion

"critical <= 1 holds throughout each run"

Array Index within Bounds (given array a of length len)

"0 <= i <= len-1 holds throughout each run"

Examples of properties impossible to express as assertions:

Examples of properties where assertions are suboptimal (too local):

Mutual Exclusion

"critical <= 1 holds throughout each run"

Array Index within Bounds (given array a of length len)

"0 <= i <= len-1 holds throughout each run"

Examples of properties impossible to express as assertions:

Absence of Deadlock

"Whenever several processes try to enter their critical section, eventually one of them does so."

Examples of properties where assertions are suboptimal (too local):

Mutual Exclusion

"critical <= 1 holds throughout each run"

Array Index within Bounds (given array a of length len)

"0 <= i <= len-1 holds throughout each run"

Examples of properties impossible to express as assertions:

Absence of Deadlock

"Whenever several processes try to enter their critical section, eventually one of them does so."

Absence of Starvation

"Whenever one process tries to enter its critical section, eventually that process does so."

Examples of properties where assertions are suboptimal (too local):

Mutual Exclusion

"critical <= 1 holds throughout each run"

Array Index within Bounds (given array a of length len)

"0 <= i <= len-1 holds throughout each run"

Examples of properties impossible to express as assertions:

Absence of Deadlock

"Whenever several processes try to enter their critical section, eventually one of them does so."

Absence of Starvation

"Whenever one process tries to enter its critical section, eventually that process does so."

these are temporal properties ⇒ use temporal logic

Boolean Temporal Logic

Numerical variables in expressions

- ► Expressions such as i <= len-1 contain numerical variables
- Propositional LTL as introduced so far only knows propositions
- Slight generalisation of LTL required

Boolean Temporal Logic

Numerical variables in expressions

- ► Expressions such as i <= len-1 contain numerical variables
- Propositional LTL as introduced so far only knows propositions
- ► Slight generalisation of LTL required

In Boolean Temporal Logic, atomic building blocks are Boolean expressions over Prometa variables

Boolean Temporal Logic over Promela

Set For_{BTL} **of Boolean Temporal Formulas** (simplified)

► all global Promela variables and constants of type bool/bit are ∈ Forr

Boolean Temporal Logic over Promela

Set For_{BTL} of Boolean Temporal Formulas (simplified)

- all global PROMELA variables and constants of type bool/bit are ∈ For_{RTI}
- ▶ if e1 and e2 are numerical PROMELA expressions, then all of e1==e2, e1!=e2, e1<e2, e1<=e2, e1>=e2 are ∈ For_{RTI}

Boolean Temporal Logic over PROMELA

Set For_{BTL} **of Boolean Temporal Formulas** (simplified)

- ▶ all global PROMELA variables and constants of type bool/bit are ∈ For_{BTI}
- if e1 and e2 are numerical PROMELA expressions, then all of e1==e2, e1!=e2, e1<e2, e1<=e2, e1>e2 are ∈ For_{BTI}
- ▶ if P is a process and 1 is a label in P, then P@1 is $\in For_{BTL}$ (P@1 reads "P is at 1")

Boolean Temporal Logic over PROMELA

Set For_{BTL} **of Boolean Temporal Formulas** (simplified)

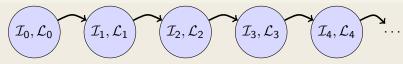
- ► all global Promela variables and constants of type bool/bit are ∈ For_{RTI}
- if e1 and e2 are numerical PROMELA expressions, then all of e1==e2, e1!=e2, e1<e2, e1<=e2, e1>e2 are ∈ For_{BTI}
- ▶ if P is a process and 1 is a label in P, then P@1 is ∈ For_{BTL} (P@1 reads "P is at 1")
- \blacktriangleright if ϕ and ψ are formulas \in For_{BTL}, then all of

$$!\phi, \quad \phi \&\& \psi, \quad \phi \mid\mid \psi, \quad \phi \rightarrow \psi, \quad \phi \Longleftrightarrow \psi$$

$$[]\phi, \quad <>\phi, \quad \phi U \psi$$

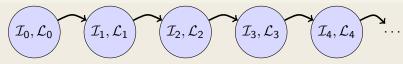
are $\in For_{RTI}$

A trace τ through a Promela model M



- $ightharpoonup \mathcal{I}_j$ maps each variable in M to its current value
- \triangleright \mathcal{L}_i maps each running process to its current location counter
- From \mathcal{L}_j to \mathcal{L}_{j+1} , only one of the location counters has advanced (exception: channel rendezvous)

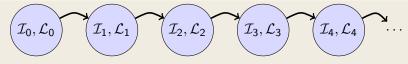
A trace τ through a Promela model M



- $ightharpoonup \mathcal{I}_j$ maps each variable in M to its current value
- $ightharpoonup \mathcal{L}_j$ maps each running process to its current location counter
- From \mathcal{L}_j to \mathcal{L}_{j+1} , only one of the location counters has advanced (exception: channel rendezvous)

Arithmetic and relational expressions are interpreted in states as expected; e.g. $\mathcal{I}_j, \mathcal{L}_j \models x < y$ iff $\mathcal{I}_j(x) < \mathcal{I}_j(y)$

A trace τ through a Promela model M

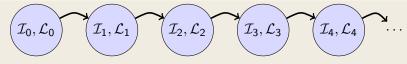


- $ightharpoonup \mathcal{I}_j$ maps each variable in M to its current value
- $ightharpoonup \mathcal{L}_j$ maps each running process to its current location counter
- From \mathcal{L}_j to \mathcal{L}_{j+1} , only one of the location counters has advanced (exception: channel rendezvous)

Arithmetic and relational expressions are interpreted in states as expected; e.g. $\mathcal{I}_j, \mathcal{L}_j \models x < y$ iff $\mathcal{I}_j(x) < \mathcal{I}_j(y)$

 $\mathcal{I}_{i}, \mathcal{L}_{i} \models \mathtt{P@l}$ iff $\mathcal{L}_{i}(\mathtt{P})$ is the location labeled with 1

A trace τ through a Promela model M



- $ightharpoonup \mathcal{I}_j$ maps each variable in M to its current value
- $ightharpoonup \mathcal{L}_j$ maps each running process to its current location counter
- From \mathcal{L}_j to \mathcal{L}_{j+1} , only one of the location counters has advanced (exception: channel rendezvous)

Arithmetic and relational expressions are interpreted in states as expected; e.g. $\mathcal{I}_j, \mathcal{L}_j \models x < y$ iff $\mathcal{I}_j(x) < \mathcal{I}_j(y)$

 $\mathcal{I}_i, \mathcal{L}_i \models \texttt{P@l}$ iff $\mathcal{L}_i(\texttt{P})$ is the location labeled with 1

Evaluating other formulas $\in For_{BTL}$ in traces τ : see previous lecture

Safety Properties

- state that something 'good' is guaranteed throughout each run
- each violating run violates the property after finitely many steps

Safety Properties

- state that something 'good' is guaranteed throughout each run
- each violating run violates the property after finitely many steps

Example

```
TL formula [](critical <= 1)
```

"It is guaranteed throughout each run that at most one process visits its critical section at any time."

Safety Properties

- state that something 'good' is guaranteed throughout each run
- each violating run violates the property after finitely many steps

Example

```
TL formula [](critical <= 1)
```

"It is guaranteed throughout each run that at most one process visits its critical section at any time."

or, equivalently:

"It will never happen that more than one process visits its critical section"

Safety Properties

- state that something 'good' is guaranteed throughout each run
- each violating run violates the property after finitely many steps

Example

```
TL formula [](critical <= 1)
```

"It is guaranteed throughout each run that at most one process visits its critical section at any time."

or, equivalently:

"It will never happen that more than one process visits its critical section."

Any violating run would have (critical <= 1) after finite time

Applying Temporal Logic to Critical Section Problem

We want to verify [](critical<=1) as a correctness property of:

```
active proctype P() {
  do :: /* non-critical activity */
        atomic {
          !inCriticalQ;
          inCriticalP = true
        critical++;
        /* critical activity */
        critical --;
        inCriticalP = false
  od
/* similarly for process Q */
```

Model Checking a Safety Property with Spin

Command Line Execution

```
Add definition of TL formula to PROMELA file

Example ltl atMostOne { [](critical <= 1) }

General ltl name { TL-formula }

can define more than one formula

> spin -a file.pml
> gcc -DSAFETY -o pan pan.c
> ./pan -N name
```

Demo: target/safety1.pml

Model Checking a Safety Property with SPIN

Command Line Execution

```
Add definition of TL formula to PROMELA file

Example ltl atMostOne { [](critical <= 1) }

General ltl name { TL-formula }

can define more than one formula

> spin -a file.pml
> gcc -DSAFETY -o pan pan.c
> ./pan -N name
```

Demo: target/safety1.pml

► The 'ltl name { TL-formula }' construct must be part of your lab submission!

Model Checking a Safety Property with SPIN

Command Line Execution

```
Add definition of TL formula to PROMELA file

Example ltl atMostOne { [](critical <= 1) }

General ltl name { TL-formula }

can define more than one formula

> spin -a file.pml
> gcc -DSAFETY -o pan pan.c
> ./pan -N name
```

Demo: target/safety1.pml

► The 'ltl name { TL-formula }' construct must be part of your lab submission!

1t1 definitions not part of Ben Ari's book (SPIN≤ 6): ignore 5.3.2, etc.

Model Checking a Safety Property using Web Interface

```
1. add definition of TL formula to PROMELA file
    Example ltl atMostOne { [](critical <= 1) }
    General ltl name { TL-formula }
    can define more than one formula</pre>
```

- 2. load PROMELA file into web interface
- 3. ensure Safety is selected
- 4. enter name of LTL formula in according field
- select Verify

Demo: safety1.pml

Model Checking a Safety Property using JSPIN

```
1. add definition of TL formula to PROMELA file
    Example ltl atMostOne { [](critical <= 1) }
    General ltl name { TL-formula }
    can define more than one formula</pre>
```

- 2. load PROMELA file into JSPIN
- 3. write name in 'LTL formula' field
- 4. ensure Safety is selected
- select Verify
 - ► (corresponds to command line ./pan -N name ...)
- 6. (if necessary) select Stop to terminate too long verification

Demo: safety1.pml

Temporal Model Checking without Ghost Variables

We want to verify mutual exclusion without using ghost variables.

```
bool inCriticalP = false, inCriticalQ = false;
active proctype P() {
 do :: atomic {
          !inCriticalQ;
          inCriticalP = true
        /* critical activity */
cs:
        inCriticalP = false
 od
}
/* similar for process Q with same label cs: */
ltl mutualExcl { []!(P@cs && Q@cs) }
```

Demo: start/noGhost.pml

Never Claims: Processes trying to show user wrong

Büchi automaton, as Promela process, for negated property

- 1. Negated TL formula translated to 'never' process
- Accepting locations in Büchi automaton represented with help of accept labels ("acceptxxx:")
- 3. If one of these reached infinitely often, the orig. property is violated

Never Claims: Processes trying to show user wrong

Büchi automaton, as Promela process, for negated property

- 1. Negated TL formula translated to 'never' process
- Accepting locations in Büchi automaton represented with help of accept labels ("acceptxxx:")
- 3. If one of these reached infinitely often, the orig. property is violated

Example (Never claim for <>p, simplified for readability)

Liveness Properties

Liveness Properties

- \blacktriangleright state that something good (ϕ) eventually happens in each run
- each violating requires infinitely many steps

Liveness Properties

Liveness Properties

- \triangleright state that something good (ϕ) eventually happens in each run
- each violating requires infinitely many steps

Example

<>csp

(with csp a variable only true in the critical section of P)

"in each run, process P visits its critical section eventually"

Applying Temporal Logic to Starvation Problem

We want to verify <>csp as a correctness property of:

```
active proctype P() {
  do :: /* non-critical activity */
        atomic {
          !inCriticalQ;
          inCriticalP = true
        csp = true;
        /* critical activity */
        csp = false;
        inCriticalP = false
 od
/* similarly for process Q */
/* there, using csq
```

Model Checking a Liveness Property using JSPIN

- 1. open PROMELA file liveness1.pml
- 2. write ltl pWillEnterC { <>csp } in PROMELA file
 (as first ltl formula)
- 3. ensure that Acceptance is selected (SPIN will search for accepting cycles through the never claim)
- 4. for the moment uncheck Weak Fairness (see discussion below)
- select Verify

Verification Fails

Demo: start/liveness1.pml

Verification fails!

Why?

Verification Fails

Demo: start/liveness1.pml

Verification fails!

Why?

The liveness property on one process "had no chance".

Not even weak fairness was switched on!

Model Checking Liveness with Weak Fairness using ${ m JSPIN}$

Always check Weak fairness when verifying liveness

- 1. open Promela file
- 2. write ltl pWillEnterC { <>csp } in PROMELA file
 (as first ltl formula)
- **3.** ensure that Acceptance is selected (SPIN will search for accepting cycles through the never claim)
- 4. ensure Weak fairness is checked
- select Verify

Model Checking Liveness using Web Interface

1. add definition of TL formula to PROMELA file

- 2. load PROMELA file into web interface
- 3. ensure Acceptance is selected
- 4. enter name of LTL formula in according field
- 5. ensure Weak fairness is checked
- 6. select Verify

Demo: liveness1.pml

Model Checking Liveness using Spin directly

Command Line Execution

```
Make sure ltl name { TL-formula } is in file.pml
> spin -a file.pml
> gcc -o pan pan.c
> ./pan -a -f [-N name]
-a acceptance cycles, -f weak fairness
```

Demo: start/liveness1.pml

Verification fails again!

Why?

Verification fails again!

Why?

Weak fairness is too weak . . .

Definition (Weak Fairness)

A run is called weakly fair iff the following holds:

each continuously executable statement is executed eventually.

Verification fails again!

Why?

Weak fairness is too weak ...

Definition (Weak Fairness)

A run is called weakly fair iff the following holds: each continuously executable statement is executed eventually.

Note that !inCriticalQ is not continuously executable!

Verification fails again!

Why?

Weak fairness is too weak ...

Definition (Weak Fairness)

A run is called weakly fair iff the following holds: each continuously executable statement is executed eventually.

Note that !inCriticalQ is not continuously executable!

Restriction to weak fairness is principal limitation of SPIN

Here, liveness needs strong fairness, which is not supported by Spin .

Revisit fair.pml

► Specify liveness of fair.pml using labels

Revisit fair.pml

- ► Specify liveness of fair.pml using labels
- Prove termination

Demo: target/fair.pml

Revisit fair.pml

- ► Specify liveness of fair.pml using labels
- Prove termination
- Here, weak fairness is needed, and sufficient

Demo: target/fair.pml

Literature for this Lecture

```
Ben-Ari Chapter 5
except Sections 5.3.2, 5.3.3, 5.4.2
(ltl construct replaces #define and -f option of SPIN)
```