Formal Methods for Software Development

Temporal Model Checking (part 2)
+ First-Order Logic

Wolfgang Ahrendt

28th September 2018

Part I

Finishing Temporal Model Checking

CHALMERS

Model Checking

Check whether a formula is valid in all runs of a transition system.

Given a transition system \mathcal{T} (e.g., derived from a PROMELA program).

Verification task: is the LTL formula ϕ satisfied in all traces of \mathcal{T} , i.e.,

$$\mathcal{T} \models \phi$$
 ?

LTL Model Checking—Overview

$$\mathcal{T} \models \phi$$
 ?

- 1. Construct generalised Büchi automaton $\mathcal{GB}_{\neg\phi}$ for negation of ϕ
- 2. Construct an equivalent normal Büchi automaton $\mathcal{B}_{\neg \phi}$, i.e.,

$$\mathcal{L}^{\omega}(\mathcal{B}_{\neg\phi}) = \mathcal{L}^{\omega}(\mathcal{G}\mathcal{B}_{\neg\phi})$$

- **3.** Construct product $\mathcal{T} \otimes \mathcal{B}_{\neg \phi}$ (model checking graph)
- **4.** Analyse whether $\mathcal{T} \otimes \mathcal{B}_{\neg \phi}$ has a

path π looping through an 'accepting node'

5. If such a π is found, then

$$\mathcal{T}
ot\models \phi$$
 and σ_{π} is a counter example.

If no such π is found, then

$$\mathcal{T} \models \phi$$

What Remains?

last lecture

3.–5. product of transition system and Büchi automaton (construction and analysis)

this lecture

- 2. generalised Büchi automata and their normalisation
- 1. translating LTL into generalised Büchi automata

Generalised Büchi Automata \mathcal{GB} and Translation to (normal) Büchi Automata \mathcal{B}

Generalised Büchi Automata

A generalised Büchi automaton is defined as:

$$\mathcal{GB} = (Q, \delta, Q_0, \mathcal{F})$$

 Q, δ, Q_0 as for standard Büchi automata

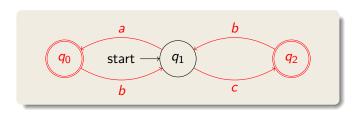
$$\mathcal{F} = \{F_1, \dots, F_k\}$$
 is a set of sets of accepting locations $(F_i = \{f_{i1}, \dots, f_{im_i}\} \subseteq Q)$

Definition (Acceptance for generalised Büchi automata)

A generalised Büchi automaton accepts an ω -word $w \in \Sigma^{\omega}$ iff for every $i \in \{1, ..., k\}$ at least one $q \in F_i$ is visited infinitely often.

CHALMERS

Generalised vs. Normal Büchi Automata: Example

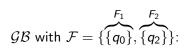


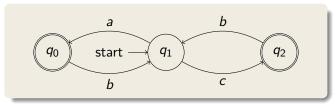
$$\mathcal{GB}$$
 with $\mathcal{F}=\{\overbrace{\{q_0\},\overbrace{\{q_2\}}\}}^{F_1}$ different from normal \mathcal{B} with $F=\{q_0,q_2\}$

Are the following ω -words accepted?

$\omega ext{-word}$	\mathcal{B}	\mathcal{GB}
$(ab)^\omega$	1	X
$(abcb)^\omega$	V	/

Translate Generalised to Normal Büchi Automata





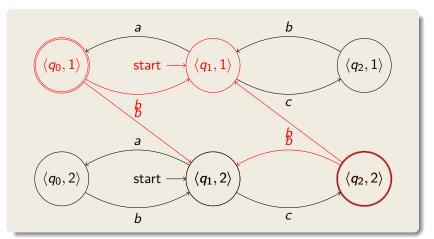
Construct \mathcal{B} (different from last slide) which accepts the same words:

$$\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{G}\mathcal{B})$$

CHALMERS

Translate Generalised to Normal Büchi Automata

Construct \mathcal{B} for \mathcal{GB} with $\mathcal{F} = \{\overbrace{\{q_0\}}^{F_1}, \overbrace{\{q_2\}}^{F_2}\}$:



One clone for each $F_i \in \mathcal{F}$ Every transition from " F_1 " is redirected to "clone 2" Every transition from " F_2 " is redirected to FMSD: Temporal Model Checking (part 2) + First-Order Logic CHALMERS 180928 10

Translate Generalised to Normal Büchi Automata (formal)

Given generalised Büchi automaton

$$\mathcal{GB} = (Q, \delta, Q_0, \mathcal{F})$$
 with $\mathcal{F} = \{F_1, \dots, F_k\}$

Equivalent normal Büchi automaton

$$\mathcal{B} = (Q', \delta', Q'_0, F')$$
 with

- ▶ $Q' = Q \times \{1, ..., k\}$
- $\delta'(\langle q, i \rangle, \sigma) = \begin{cases} \{\langle q', i \rangle \mid q' \in \delta(q, \sigma)\} & \text{if } q \notin F_i \\ \{\langle q', (i \bmod k) + 1 \rangle \mid q' \in \delta(q, \sigma)\} & \text{if } q \in F_i \end{cases}$
- $Q_0' = \{ \langle q, \mathbf{1} \rangle | q \in Q_0 \}$
- $F' = \{ \langle q, \mathbf{1} \rangle | q \in F_1 \}$

Construction of a Generalised Büchi Automaton \mathcal{GB}_{ϕ} for an LTL-Formula ϕ

Focus on □-free and ◊-free LTL

- ▶ Following construction assumes formulas without \square and \lozenge .
- ightharpoonup Only temporal modality is \mathcal{U} .
- ▶ □ can be removed using

$$\Box \phi \quad \equiv \quad \neg \Diamond \neg \phi$$

▶ ♦ can be removed using

$$\Diamond \phi \equiv \text{true } \mathcal{U} \phi$$

Theory and Example at Once

We introduce the general consruction togher with example.

Task:

construct

 \mathcal{GB}_{ϕ}

for

$$\phi \equiv r \mathcal{U} s$$

Fischer-Ladner Closure

Fischer-Ladner closure of an LTL-formula ϕ

$$\mathit{FL}(\phi) = \{ \varphi | \varphi \text{ is subformula or negated subformula of } \phi \}$$

 $(\neg\neg\varphi)$ is identified with φ

Example

We want to translate $\phi \equiv r \mathcal{U}s$

$$FL(rUs) = \{r, \neg r, s, \neg s, rUs, \neg (rUs)\}$$

\mathcal{GB}_{ϕ} -Construction: Locations

Locations of \mathcal{GB}_{ϕ} are $Q\subseteq 2^{FL(\phi)}$ where each $q\in Q$ satisfies:

Consistent, Total

 $\psi \in FL(\phi)$: exactly one of ψ and $\neg \psi$ in q

Downward Closed

- $\blacktriangleright \ \psi_1 \land \psi_2 \in q : \ \psi_1 \in q \ \text{and} \ \psi_2 \in q$
- $\blacktriangleright \ \psi_1 \lor \psi_2 \in q: \ \psi_1 \in q \ \text{or} \ \psi_2 \in q$

Until Consistent

- $\blacktriangleright \ \psi_1 \mathcal{U} \psi_2 \in q \ \text{then} \ \psi_1 \in q \ \text{or} \ \psi_2 \in q$
- $ightharpoonup
 eg(\psi_1 \, \mathcal{U} \psi_2) \in q \text{ then } \neg \psi_2 \in q$

CHALMERS

\mathcal{B}_{ϕ} -Construction: Locations

consistent, total	$\in Q$
$\overline{\{\neg(r\mathcal{U}s),\neg r,\neg s\}}$	V
$\overline{\{\neg(r\mathcal{U}s),\neg r,s\}}$	X
$\overline{\{\neg(r\mathcal{U}s),r,\neg s\}}$	V
$\overline{\{\neg(r\mathcal{U}s),r,s\}}$	X
$fr\mathcal{U}s, \neg r, \neg s$	X
$\{rUs, \neg r, s\}$	V
$\overline{\{r\mathcal{U}s,r,\neg s\}}$	V
$fr\mathcal{U}s, r, s$	V

Locations of \mathcal{B}_{ϕ} are sets of formulas which can be simultaneously true

\mathcal{B}_{ϕ} -Construction: Transitions

$$\underbrace{\{r\mathcal{U}s,\neg r,s\}}_{q_1},\underbrace{\{r\mathcal{U}s,r,\neg s\}}_{q_2},\underbrace{\{r\mathcal{U}s,r,s\}}_{q_3},\underbrace{\{\neg(r\mathcal{U}s),r,\neg s\}}_{q_4},\underbrace{\{\neg(r\mathcal{U}s),\neg r,\neg s\}}_{q_5}$$
Transitions $(q,\alpha,q')\in\delta_\phi$:

such that

1.
$$\alpha = q \cap AP$$

(AP: atomic propositions)

- 2. If $\psi_1 \mathcal{U} \psi_2 \in q$ and $\neg \psi_2 \in q$ then $\psi_1 \mathcal{U} \psi_2 \in q'$
- 3. If $\neg(\psi_1 \mathcal{U}\psi_2) \in q$ and $\psi_1 \in q$ then $\neg(\psi_1 \mathcal{U}\psi_2) \in q'$

Initial locations

$$q \in I_{\phi}$$
 iff $\phi \in q$

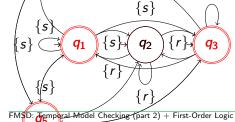
Accepting locations

CHALMERS

$$\mathcal{F} = \{F_1, \dots, F_n\}$$

180928

18 / 68



q4

Remarks on Generalized Büchi Automata

- lacktriangle Construction always gives exponential number of states in $|\phi|$
- ▶ Satisfiability checking of LTL is PSPACE-complete
- There exist (more complex) constructions that minimize number of required states
 - ▶ One of these is used in SPIN, which moreover computes the states lazily

Part II

Starting First-order Logic

Motivation for Introducing First-Order Logic

1) We specify JAVA programs with Java Modeling Language (JML)

JML combines

- ▶ JAVA expressions
- ► First-Order Logic (FOL)

2) We verify JAVA programs using Dynamic Logic

Dynamic Logic combines

- ► First-Order Logic (FOL)
- ▶ JAVA programs

FOL: Language and Calculus

We introduce:

- ► FOL as a language
- ► Sequent calculus for proving FOL formulas
- KeY system as propositional, and first-order, prover (for now)
- Formal semantics

First-Order Logic: Signature

Signature

A first-order signature Σ consists of

- \triangleright a set T_{Σ} of types
- \triangleright a set F_{Σ} of function symbols
- \triangleright a set P_{Σ} of predicate symbols
- ightharpoonup a typing $\alpha_{
 m S}$

Intuitively, the typing α_{Σ} determines

- for each function and predicate symbol:
 - its arity, i.e., number of arguments
 - its argument types
- for each function symbol its result type.

Formally:

- $\triangleright \alpha_{\Sigma}(p) \in T_{\Sigma}^*$ for all $p \in P_{\Sigma}$
- (arity of p is $|\alpha_{\Sigma}(p)|$)
- $\bullet \quad \alpha_{\Sigma}(f) \in T_{\Sigma}^* \times T_{\Sigma} \text{ for all } f \in F_{\Sigma} \quad (\text{arity of } f \text{ is } |\alpha_{\Sigma}(f)| 1)$

Example Signature Σ_1 + Constants

$$\begin{split} &T_{\Sigma_1} = \{\text{int}\}, \\ &F_{\Sigma_1} = \{+, -\} \cup \{..., -2, -1, 0, 1, 2, ...\}, \\ &P_{\Sigma_1} = \{<\} \\ &\alpha_{\Sigma_1}(<) = (\text{int,int}) \\ &\alpha_{\Sigma_1}(+) = \alpha_{\Sigma_1}(-) = (\text{int,int,int}) \\ &\alpha_{\Sigma_1}(0) = \alpha_{\Sigma_1}(1) = \alpha_{\Sigma_1}(-1) = ... = (\text{int}) \end{split}$$

Constant Symbols

A function symbol f with $|\alpha_{\Sigma_1}(f)| = 1$ (i.e., with arity 0) is called constant symbol.

Here, the constant symbols are: \dots , -2, -1, 0, 1, 2, \dots

CHALMERS

Syntax of First-Order Logic: Signature Cont'd

Type declaration of signature symbols

- Write τ x; to declare variable x of type τ
- \blacktriangleright Write $p(\tau_1,\ldots,\tau_r)$; for $\alpha(p)=(\tau_1,\ldots,\tau_r)$
- \blacktriangleright Write τ $f(\tau_1,\ldots,\tau_r)$; for $\alpha(f)=(\tau_1,\ldots,\tau_r,\tau)$

r=0 is allowed, then write f instead of f().

Example

```
Variables
                   integerArray a; int i;
Predicate Symbols
                   isEmpty(List); alertOn;
Function Symbols
                   int arrayLookup(int); Object o;
```

Example Signature Σ_1 + Notation

Typing of Signature:

```
\alpha_{\Sigma_1}(<) = (int,int)
\alpha_{\Sigma_1}(+) = \alpha_{\Sigma_1}(-) = (int, int, int)
\alpha_{\Sigma_1}(0) = \alpha_{\Sigma_1}(1) = \alpha_{\Sigma_1}(-1) = \dots = (int)
```

can alternatively be written as:

```
<(int,int);
int +(int.int):
int 0: int 1: int -1: ...
```

First-Order Terms

We assume a set V of variables $(V \cap (F_{\Sigma} \cup P_{\Sigma}) = \emptyset)$. Each $v \in V$ has a unique type $\alpha_{\Sigma}(v) \in T_{\Sigma}$.

Terms are defined recursively:

Terms

A first-order term of type $au \in T_{\Sigma}$

- ightharpoonup is either a variable of type τ , or
- ▶ has the form $f(t_1, ..., t_n)$, where $f \in F_{\Sigma}$ has result type τ , and each t_i is term of the correct type, following the typing α_{Σ} of f.

If f is a constant symbol, the term is written f, instead of f().

Terms over Signature Σ_1

Example terms over Σ_1 : (assume variables int v_1 ; int v_2 ;)

- **▶** −7
- \rightarrow +(-2, 99)
- **▶** -(7, 8)
- \rightarrow +(-(7, 8), 1)
- \rightarrow +(-(v_1 , 8), v_2)

Our variant of FOL allows infix notation for common functions:

- -2 + 99
- **▶** 7 8
- \triangleright (7 8) + 1
- \triangleright $(v_1 8) + v_2$

Atomic Formulas

Atomic Formulas

Given a signature Σ .

An atomic formula has either of the forms

- true
- ► false
- ▶ $t_1 = t_2$ ("equality"), where t_1 and t_2 are first-order terms of the same type.
- ▶ $p(t_1,...,t_n)$ ("predicate"), where $p \in P_{\Sigma}$, and each t_i is term of the correct type, following the typing α_{Σ} of p.

Atomic Formulas over Signature Σ_1

Example formulas over Σ_1 : (assume variable int ν ;)

- ▶ 7 = 8
- **►** <(7, 8)
- \triangleright <(-2 v, 99)
- \triangleright <(v, v + 1)

Our variant of FOL allows infix notation for common predicates:

- **▶** 7 < 8
- \triangleright -2 v < 99
- \triangleright v < v + 1

First-Order Formulas

Formulas

- each atomic formula is a formula
- with ϕ and ψ formulas, x a variable, and τ a type, the following are also formulas:
 - $\blacktriangleright \neg \phi$ ("not ϕ ")
 - $\blacktriangleright \phi \wedge \psi$ (" ϕ and ψ ")

 - $\blacktriangleright \phi \rightarrow \psi$ (" ϕ implies ψ ")
 - $\phi \leftrightarrow \psi$ (" ϕ is equivalent to ψ ")
 - $\forall \tau x; \phi \quad (\text{"for all } x \text{ of type } \tau \text{ holds } \phi")$
 - $ightharpoonup \exists \tau x; \phi$ ("there exists an x of type τ such that ϕ ")
- In $\forall \tau x$; ϕ and $\exists \tau x$; ϕ the variable x is 'bound' (i.e., 'not free').

Formulas with no free variable are 'closed'.

First-order Formulas: Examples

(signatures/types left out here)

Example (There are at least two elements)

$$\exists x, y; \neg (x = y)$$

Example (Strict partial order)

Irreflexivity
$$\forall x; \neg(x < x)$$

Asymmetry $\forall x; \forall y; (x < y \rightarrow \neg(y < x))$
Transitivity $\forall x; \forall y; \forall z;$
 $(x < y \land y < z \rightarrow x < z)$

(Is any of the three formulas redundant?)

Semantics (briefly here, more thorough later)

Domain

A domain $\mathcal D$ is a set of elements which are (potentially) the $\emph{meaning}$ of terms and variables.

Interpretation

An interpretation \mathcal{I} (over \mathcal{D}) assigns *meaning* to the symbols in $F_{\Sigma} \cup P_{\Sigma}$ (assigning functions to function symbols, relations to predicate symbols).

Valuation

In a given \mathcal{D} and \mathcal{I} , a closed formula evaluates to either \mathcal{T} or \mathcal{F} .

Validity

A closed formula is valid if it evaluates to T in all \mathcal{D} and \mathcal{I} .

In the context of specification/verification of programs: each $(\mathcal{D}, \mathcal{I})$ is called a 'state'.

Useful Valid Formulas

Let ϕ and ψ be arbitrary, closed formulas (whether valid or not).

The following formulas are valid:

- $\blacktriangleright \neg (\phi \land \psi) \leftrightarrow \neg \phi \lor \neg \psi$
- $\blacktriangleright \neg (\phi \lor \psi) \leftrightarrow \neg \phi \land \neg \psi$
- \blacktriangleright (true $\land \phi$) $\leftrightarrow \phi$
- (false $\lor \phi$) $\leftrightarrow \phi$
- \blacktriangleright true $\lor \phi$
- $ightharpoonup \neg (false \land \phi)$
- $\blacktriangleright (\phi \rightarrow \psi) \leftrightarrow (\neg \phi \lor \psi)$
- $ightharpoonup \phi
 ightarrow {
 m true}$
- ightharpoonup false $ightarrow \phi$
- \blacktriangleright (true $\rightarrow \phi$) $\leftrightarrow \phi$
- \blacktriangleright $(\phi \rightarrow false) \leftrightarrow \neg \phi$

Useful Valid Formulas

Assume that x is the only variable which may appear freely in ϕ or ψ .

The following formulas are valid:

- $ightharpoonup \neg (\exists \ \tau \ x; \ \phi) \leftrightarrow \forall \ \tau \ x; \ \neg \phi$
- $ightharpoonup \neg (\forall \ \tau \ x; \ \phi) \leftrightarrow \exists \ \tau \ x; \ \neg \phi$
- $(\forall \ \tau \ x; \ (\phi \land \psi)) \leftrightarrow (\forall \ \tau \ x; \ \phi) \land (\forall \ \tau \ x; \ \psi)$
- $\blacktriangleright (\exists \ \tau \ x; \ (\phi \lor \psi)) \leftrightarrow (\exists \ \tau \ x; \ \phi) \lor (\exists \ \tau \ x; \ \psi)$

Are the following formulas also valid?

- $\blacktriangleright (\forall \ \tau \ x; \ (\phi \lor \psi)) \leftrightarrow (\forall \ \tau \ x; \ \phi) \lor (\forall \ \tau \ x; \ \psi)$
- $\blacktriangleright (\exists \tau x; (\phi \land \psi)) \leftrightarrow (\exists \tau x; \phi) \land (\exists \tau x; \psi)$

Remark on Concrete Syntax

	Text book	Spin	KeY
Negation	\neg	!	į
Conjunction	\wedge	&&	&
Disjunction	\vee		
Implication	\rightarrow , \supset	->	->
Equivalence	\leftrightarrow	<->	<->
Universal Quantifier	$\forall x; \phi$	n/a	\forall τ x ; ϕ
Existential Quantifier	∃ <i>x</i> ; <i>φ</i>	n/a	\exists τ x ; ϕ
Value equality	=	==	=

Motivation for a Sequent Calculus

How to show a formula valid in propositional logic? → use a semantic truth table.

How about FOL? Formula: $isEven(x) \lor isOdd(x)$

X	isEven(x)	isOdd(x)	$isEven(x) \lor isOdd(x)$
1	F	T	T
2	T	F	T

Checking validity via semantics does not work.

Instead...

Reasoning by Syntactic Transformation

Prove validity of ϕ by **syntactic** transformation of ϕ

Logic Calculus: Sequent Calculus based on notion of sequent:

$$\underbrace{\psi_1,\ldots,\psi_m}_{\text{antecedent}} \quad \Longrightarrow \quad \underbrace{\phi_1,\ldots,\phi_n}_{\text{succedent}}$$

has same meaning as

$$(\psi_1 \wedge \cdots \wedge \psi_m) \rightarrow (\phi_1 \vee \cdots \vee \phi_n)$$

which has (for closed formulas ψ_i, ϕ_i) same meaning as

$$\{\psi_1,\ldots,\psi_m\} \models \phi_1 \vee \cdots \vee \phi_n$$

Notation for Sequents

$$\psi_1, \dots, \psi_m \implies \phi_1, \dots, \phi_n$$

Consider antecedent/succedent as sets of formulas, may be empty

Schema Variables

 ϕ,ψ,\dots match formulas, Γ,Δ,\dots match sets of formulas Characterize infinitely many sequents with single schematic sequent, e.g.,

$$\Gamma \implies \phi \wedge \psi, \Delta$$

matches any sequent with occurrence of conjunction in succedent

Here, we call $\phi \wedge \psi$ main formula and Γ, Δ side formulas of sequent

Sequent Calculus Rules

Write syntactic transformation schema for sequents that reflects semantics of connectives

$$\mathsf{RuleName} \xrightarrow{\overbrace{\Gamma_1 \Rightarrow \Delta_1 \ \cdots \ \Gamma_r \Rightarrow \Delta_r}^{\mathsf{premisses}}} \underbrace{\overbrace{\Gamma_1 \Rightarrow \Delta_1 \ \cdots \ \Gamma_r \Rightarrow \Delta_r}^{\mathsf{premisses}}}_{\mathsf{conclusion}}$$

Meaning: For proving the conclusion, it suffices to prove all premisses.

Example

$$\frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \wedge \psi, \Delta}$$

Admissible to have no premisses (iff conclusion is valid, e.g., axiom)

A rule is sound (correct) iff the validity of its premisses implies the validity of its conclusion.

'Propositional' Sequent Calculus Rules

clo	se $\Gamma, \phi \Longrightarrow \phi, \Delta$ true $\Gamma =$	$\Rightarrow \operatorname{true}, \Delta$ false $\overline{\Gamma, \operatorname{false} \Rightarrow \Delta}$
	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \Longrightarrow \phi, \Delta}{\Gamma, \neg \phi \Longrightarrow \Delta}$	$\frac{\Gamma, \phi \Rightarrow \Delta}{\Gamma \Rightarrow \neg \phi, \Delta}$
and	$\frac{\Gamma, \phi, \psi \Longrightarrow \Delta}{\Gamma, \phi \land \psi \Longrightarrow \Delta}$	$\frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \land \psi, \Delta}$
or	$\frac{\Gamma, \phi \Longrightarrow \Delta \qquad \Gamma, \psi \Longrightarrow \Delta}{\Gamma, \phi \vee \psi \Longrightarrow \Delta}$	$\frac{\Gamma \Longrightarrow \phi, \psi, \Delta}{\Gamma \Longrightarrow \phi \vee \psi, \Delta}$
imp	$\frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma, \psi \Longrightarrow \Delta}{\Gamma, \phi \to \psi \Longrightarrow \Delta}$	$\frac{\Gamma, \phi \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \to \psi, \Delta}$

Sequent Calculus Proofs

Goal to prove:
$$\mathcal{G} = \psi_1, \ldots, \psi_m \implies \phi_1, \ldots, \phi_n$$

- \triangleright find rule \mathcal{R} whose conclusion matches \mathcal{G}
- \triangleright instantiate \mathcal{R} such that its conclusion is identical to \mathcal{G}
- \triangleright apply that instantiation to all premisses of \mathcal{R} , resulting in new goals $\mathcal{G}_1, \ldots, \mathcal{G}_r$
- recursively find proofs for $\mathcal{G}_1, \ldots, \mathcal{G}_r$
- tree structure with goal as root
- close proof branch when rule without premiss encountered

Goal-directed proof search

- Paper proofs: root at bottom, grow upwards
- ► KeY tool proofs: root at top, grow downwards

A Simple Proof

$$\begin{array}{ccc}
\text{CLOSE} & * & * & * \\
\hline
p \Rightarrow p, q & \hline
p, q \Rightarrow q & \text{CLOSE}
\end{array}$$

$$\begin{array}{c}
p, (p \rightarrow q) \Rightarrow q \\
\hline
p \wedge (p \rightarrow q) \Rightarrow q \\
\Rightarrow (p \wedge (p \rightarrow q)) \rightarrow q
\end{array}$$

A proof is closed iff all its branches are closed

prop.key

Proving a universally quantified formula

Claim: $\forall \tau x$; ϕ is true

How is such a claim proved in mathematics?

All even numbers are divisible by 2 $\forall \text{ int } x$; (even(x) $\rightarrow \text{divByTwo}(x)$)

Let c be an arbitrary number Declare "unused" constant int c

The even number c is divisible by 2 prove $\operatorname{even}(c) \to \operatorname{divByTwo}(c)$

Sequent rule ∀-right

forallRight
$$\frac{\Gamma \Longrightarrow [x/c]\,\phi,\Delta}{\Gamma \Longrightarrow \forall\,\tau\,x;\,\phi,\Delta}$$

- \triangleright $[x/c] \phi$ is result of replacing each occurrence of x in ϕ with c
- ightharpoonup c new constant of type au

Proving an existentially quantified formula

Claim: $\exists \tau x$; ϕ is true

How is such a claim proved in mathematics?

There is at least one prime number $\exists int x$; prime(x)

Provide any "witness", say, 7 Use variable-free term int 7

7 is a prime number prime(7)

Sequent rule ∃-right

existsRight
$$\frac{\Gamma \Longrightarrow [x/t] \phi, \ \exists \ \tau \ x; \ \phi, \Delta}{\Gamma \Longrightarrow \exists \ \tau \ x; \ \phi, \Delta}$$

- ightharpoonup t any variable-free term of type au
- ▶ We might need other instances besides t! Keep $\exists \tau x$; ϕ

Using a universally quantified formula

We assume $\forall \tau x$; ϕ is true

How is such a fact used in a mathematical proof?

We know that all primes are odd $\forall \operatorname{int} x$; (prime(x) $\rightarrow \operatorname{odd}(x)$)

In particular, this holds for 17 Use variable-free term int 17

We know: if 17 is prime it is odd $prime(17) \rightarrow odd(17)$

Sequent rule ∀-left

forallLeft
$$\frac{\Gamma, \forall \tau \, x; \, \phi, \, [x/t] \, \phi \Longrightarrow \Delta}{\Gamma, \forall \tau \, x; \, \phi \Longrightarrow \Delta}$$

- ightharpoonup t any variable-free term of type au
- ▶ We might need other instances besides t! Keep $\forall \tau x$; ϕ

Using an existentially quantified formula

We assume $\exists \tau x$; ϕ is true

How is such a fact used in a mathematical proof?

We know such an element exists. Let's give it a new name for future reference.

Sequent rule ∃-left

existsLeft
$$\frac{\Gamma, [x/c] \phi \Longrightarrow \Delta}{\Gamma, \exists \tau x; \phi \Longrightarrow \Delta}$$

ightharpoonup c **new** constant of type au

Using an equation between terms

We assume t = t' is true

How is such a fact used in a mathematical proof?

$$x = y-1 \Longrightarrow 1 = x+1/y$$

Use x = y-1 to modify x+1/y:

replace x in succedent with right-hand side of antecedent

$$x = y-1 \Longrightarrow 1 = y-1+1/y$$

Sequent rule =-left

$$\mathsf{applyEqL} \ \frac{ \Gamma, t = t', [t/t'] \, \phi \Longrightarrow \Delta }{ \Gamma, t = t', \phi \Longrightarrow \Delta } \quad \mathsf{applyEqR} \ \frac{ \Gamma, t = t' \Longrightarrow [t/t'] \, \phi, \Delta }{ \Gamma, t = t' \Longrightarrow \phi, \Delta }$$

- ► Always replace left- with right-hand side (use eqSymm if necessary)
- ► t,t' variable-free terms of the same type

Closing a subgoal in a proof

▶ We derived a sequent that is obviously valid

close
$$\frac{}{\Gamma, \phi \Rightarrow \phi, \Delta}$$
 true $\frac{}{\Gamma \Rightarrow \mathrm{true}, \Delta}$ false $\frac{}{\Gamma, \mathrm{false} \Rightarrow \Delta}$

▶ We derived an equation that is obviously valid

eqClose
$$T \Rightarrow t = t, \Delta$$

Sequent Calculus for FOL at One Glance

	left side, antecedent	right side, succedent
\forall	$\frac{\Gamma, \forall \tau x; \phi, [x/t'] \phi \Longrightarrow \Delta}{\Gamma, \forall \tau x; \phi \Longrightarrow \Delta}$	$\frac{\Gamma \Longrightarrow [x/c] \phi, \Delta}{\Gamma \Longrightarrow \forall \tau x; \phi, \Delta}$
3	$\frac{\Gamma, [x/c] \phi \Longrightarrow \Delta}{\Gamma, \exists \tau x; \phi \Longrightarrow \Delta}$	$\frac{\Gamma \Longrightarrow [x/t'] \phi, \ \exists \tau x; \ \phi, \Delta}{\Gamma \Longrightarrow \exists \tau x; \ \phi, \Delta}$
=	$\frac{\Gamma,t=t'\Longrightarrow [t/t']\phi,\Delta}{\Gamma,t=t'\Longrightarrow\phi,\Delta}$ (+ application rule on left side)	$\overline{\Gamma \Longrightarrow t = t, \Delta}$

- $ightharpoonup [t/t'] \phi$ is result of replacing each occurrence of t in ϕ with t'
- ightharpoonup t,t' variable-free terms of type au
- \triangleright c **new** constant of type τ (occurs not on current proof branch)
- ► Equations can be reversed by commutativity

Recap: 'Propositional' Sequent Calculus Rules

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \Longrightarrow \phi, \Delta}{\Gamma, \neg \phi \Longrightarrow \Delta}$	$\frac{\Gamma, \phi \Longrightarrow \Delta}{\Gamma \Longrightarrow \neg \phi, \Delta}$
and	$\frac{\Gamma, \phi, \psi \Longrightarrow \Delta}{\Gamma, \phi \land \psi \Longrightarrow \Delta}$	$\frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \wedge \psi, \Delta}$
or	$\begin{array}{c c} \Gamma, \phi \Longrightarrow \Delta & \Gamma, \psi \Longrightarrow \Delta \\ \hline \Gamma, \phi \lor \psi \Longrightarrow \Delta \end{array}$	$\frac{\Gamma \Longrightarrow \phi, \psi, \Delta}{\Gamma \Longrightarrow \phi \vee \psi, \Delta}$
imp	$\begin{array}{c c} \Gamma \Longrightarrow \phi, \Delta & \Gamma, \psi \Longrightarrow \Delta \\ \hline \Gamma, \phi \to \psi \Longrightarrow \Delta \end{array}$	$\frac{\Gamma, \phi \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \to \psi, \Delta}$
clos		$ au_{\text{true}, \Delta}$ false $\overline{\Gamma, \text{false} \Rightarrow \Delta}$

Example (A simple theorem about binary relations)

Untyped logic: let static type of x and y be \top \exists -left: substitute new constant c of type \top for x \forall -right: substitute new constant d of type \top for y \forall -left: free to substitute any term of type \top for y, choose d \exists -right: free to substitute any term of type \top for x, choose c Close

Using an existentially quantified formula

Let x, y denote integer constants, both are not zero. We know further that x divides y.

Show: (y/x) * x = y ('/') is division on integers, i.e., the equation is not always true, e.g. x = 2, y = 1

Proof: We know x divides y, i.e. there exists a k such that y = k * x. Let now c denote such a k. Hence we can replace y by c * x on the right side. . . . \square

$$\vdots$$

$$\neg(x=0), \neg(y=0), y=c*x \Longrightarrow ((c*x)/x)*x=y$$

$$\neg(x=0), \neg(y=0), y=c*x \Longrightarrow (y/x)*x=y$$

$$\neg(x=0), \neg(y=0), \exists \text{ int } k; y=k*x \Longrightarrow (y/x)*x=y$$

Features of the KeY Theorem Prover

Demo

rel.key, twoInstances.key

Feature List

- Can work on multiple proofs simultaneously (task list)
- ▶ Point-and-click navigation within proof
- ▶ Undo proof steps, prune proof trees
- ▶ Pop-up menu with proof rules applicable in pointer focus
- Preview of rule effect as tool tip
- Quantifier instantiation and equality rules by drag-and-drop
- ▶ Possible to hide (and unhide) parts of a sequent
- Saving and loading of proofs

Literature for this Lecture

KeYbook W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. Schmitt, M. Ulbrich, editors.
Deductive Software Verification - The KeY Book Vol 10001 of LNCS, Springer, 2016 (E-book at link.springer.com)

W. Ahrendt, S. Grebing, Using the KeY Prover Chapter 15 in [KeYbook]

further reading:

P.H. Schmitt, First-Order Logic, Chapter 2 in [KeYbook]

Part III

First-Order Semantics

First-Order Semantics

From propositional to first-order semantics

- ▶ In prop. logic, an interpretation of variables with $\{T, F\}$ sufficed
- ▶ In first-order logic we must assign meaning to:
 - ▶ function symbols
 - predicate symbols
 - variables bound in quantifiers
- ▶ Respect typing: int i, List 1 must denote different items

What we need (to interpret a first-order formula)

- 1. A typed domain of items
- 2. A mapping from function symbols to functions on items
- 3. A mapping from predicate symbols to relation on items
- 4. A mapping from variables to items

First-Order Domains

1. A typed domain of items:

Definition (Typed Domain)

A non-empty set \mathcal{D} of items is a domain.

A typing of $\mathcal D$ wrt. signature Σ is a mapping $\delta:\mathcal D\to\mathcal T_\Sigma$

We require from $\mathcal D$ and δ that no type is empty:

for each $au \in \mathcal{T}_{\Sigma}$, there is a $d \in \mathcal{D}$ with $\delta(d) = au$

- ▶ If $\delta(d) = \tau$, we say d has type τ .
- $ightharpoonup \mathcal{D}^{\tau} = \{d \in \mathcal{D} \mid \delta(d) = \tau\}$ is called subdomain of type τ .
- ▶ It follows that $\mathcal{D}^{\tau} \neq \emptyset$ for each $\tau \in T_{\Sigma}$.

First-Order States

- 2. A mapping from function symbol to functions on items
- 3. A mapping from predicate symbol to relation on items

Definition (Interpretation, First-Order State)

Let \mathcal{D} be a domain with typing δ .

Let $\mathcal I$ be a mapping, called interpretation, from function and predicate symbols to functions and relations on items, respectively, such that

$$\begin{split} \mathcal{I}(f) : \mathcal{D}^{\tau_1} \times \dots \times \mathcal{D}^{\tau_r} &\to \mathcal{D}^{\tau} \quad \text{ when } \alpha_{\Sigma}(f) = (\tau_1, \dots, \tau_r, \tau) \\ \mathcal{I}(p) \subseteq \mathcal{D}^{\tau_1} \times \dots \times \mathcal{D}^{\tau_r} & \text{ when } \alpha_{\Sigma}(p) = (\tau_1, \dots, \tau_r) \end{split}$$

Then $S = (\mathcal{D}, \delta, \mathcal{I})$ is a first-order state.

First-Order States Cont'd

Example

Signature: int i; short j; int f(int); Object obj; <(int,int); $\mathcal{D} = \{17, 2, o\}$ where all numbers are short

$$\mathcal{I}(j) = 17$$

$$\mathcal{I}(\text{obj}) = o$$

$$\boxed{\mathcal{D}^{\text{int}} \mid \mathcal{I}(f)}$$

$$2 \mid 2$$

 $\mathcal{I}(i) = 17$

$\mathcal{D}^{ ext{int}} imes \mathcal{D}^{ ext{int}}$	in $\mathcal{I}(<)$?
(2,2)	F
(2,17)	T
(17, 2)	F
(17, 17)	F

One of uncountably many possible first-order states!

Semantics of Equality

Definition

Interpretation is fixed as $\mathcal{I}(=) = \{(d, d) \mid d \in \mathcal{D}\}$

Exercise: write down the predicate table for example domain

Signature Symbols vs. Domain Elements

- ▶ Domain elements different from the terms representing them
- First-order formulas and terms have no access to domain

Example

```
Signature: Object obj1, obj2;
```

Domain:
$$\mathcal{D} = \{o\}$$

In this state, necessarily $\mathcal{I}(\texttt{obj1}) = \mathcal{I}(\texttt{obj2}) = o$

Variable Assignments

4. A mapping from variables to items

Think of variable assignment as environment for storage of local variables

Definition (Variable Assignment)

A variable assignment β maps variables to domain elements. It respects the variable type, i.e., if x has type τ then $\beta(x) \in \mathcal{D}^{\tau}$

Definition (Modified Variable Assignment)

Let y be variable of type τ , β variable assignment, $d \in \mathcal{D}^{\tau}$:

$$\beta_y^d(x) := \left\{ \begin{array}{ll} \beta(x) & x \neq y \\ d & x = y \end{array} \right.$$

Semantic Evaluation of Terms

Given a first-order state $\mathcal S$ and a variable assignment β it is possible to evaluate first-order terms under $\mathcal S$ and β

Definition (Valuation of Terms)

 $val_{S,\beta}$: Term $\to \mathcal{D}$ such that $val_{S,\beta}(t) \in \mathcal{D}^{\tau}$ for $t \in \mathsf{Term}_{\tau}$:

- \triangleright $val_{S,\beta}(x) = \beta(x)$
- $ightharpoonup val_{\mathcal{S},\beta}(f(t_1,\ldots,t_r)) = \mathcal{I}(f)(val_{\mathcal{S},\beta}(t_1),\ldots,val_{\mathcal{S},\beta}(t_r))$

Semantic Evaluation of Terms Cont'd

Example

Signature: int i; short j; int f(int); $\mathcal{D} = \{17, 2, o\}$ where all numbers are short Variables: Object obj; int x;

$$\mathcal{I}(\mathtt{i}) = 17$$
 $\mathcal{I}(\mathtt{j}) = 17$

$\mathcal{I}(\mathtt{f})$
17
2

Var	β
obj	0
х	17

- $ightharpoonup val_{S,\beta}(f(f(i)))$?
- \triangleright $val_{S,\beta}(x)$?

Semantic Evaluation of Formulas

Definition (Valuation of Formulas)

 $val_{\mathcal{S},\beta}(\phi)$ for $\phi \in For$

- $ightharpoonup val_{S,\beta}(p(t_1,\ldots,t_r)) = T$ iff $(val_{S,\beta}(t_1),\ldots,val_{S,\beta}(t_r)) \in \mathcal{I}(p)$
- $ightharpoonup val_{S,\beta}(\phi \wedge \psi) = T$ iff $val_{S,\beta}(\phi) = T$ and $val_{S,\beta}(\psi) = T$
- $ightharpoonup \neg, \lor, \rightarrow, \leftrightarrow$ as in propositional logic
- $ightharpoonup val_{S,\beta}(orall \ au \ x; \ \phi) = T \quad ext{iff} \quad val_{S,\beta}(\phi) = T \quad ext{for all } \ d \in \mathcal{D}^{\tau}$
- $ightharpoonup val_{S,\beta}(\exists \tau \ x; \ \phi) = T \quad \text{iff} \quad val_{S,\beta}(\phi) = T \quad \text{for at least one } d \in \mathcal{D}^{\tau}$

Semantic Evaluation of Formulas Cont'd

Example

Signature: short j; int f(int); Object obj; <(int,int); $\mathcal{D} = \{17, 2, o\}$ where all numbers are short

$$\mathcal{I}(j) = 17$$
 $\mathcal{I}(\mathtt{obj}) = o$

$$\begin{array}{|c|c|c|c|}\hline \mathcal{D}^{\mathbf{int}} & \mathcal{I}(f) \\\hline 2 & 2 \\\hline 17 & 2 \\\hline \end{array}$$

$\mathcal{D}^{ ext{int}} imes \mathcal{D}^{ ext{int}}$	in $\mathcal{I}(<)$?
(2,2)	F
(2,17)	T
(17, 2)	F
(17, 17)	F

- $ightharpoonup val_{S,\beta}(f(j) < j)$?
- $ightharpoonup val_{S,\beta}(\exists \operatorname{int} x; f(x) = x) ?$
- ▶ $val_{S,\beta}(\forall \text{ Object } o1; \forall \text{ Object } o2; o1 = o2)$?

Semantic Notions

Definition (Satisfiability, Truth, Validity)

$$\mathit{val}_{\mathcal{S},\beta}(\phi) = T$$
 $(\phi \text{ is satisfiable})$
 $\mathcal{S} \models \phi$ iff for all $\beta : \mathit{val}_{\mathcal{S},\beta}(\phi) = T$ $(\phi \text{ is true in } \mathcal{S})$
 $\models \phi$ iff for all $\mathcal{S} : \mathcal{S} \models \phi$ $(\phi \text{ is valid})$

Closed formulas that are satisfiable are also true: one top-level notion

Example

- ▶ f(j) < j is true in S
- ▶ $\exists \text{ int } x$; i = x is valid
- ▶ $\exists \text{ int } x$; $\neg(x = x)$ is not satisfiable