
Advanced Algorithms Course.

Lecture Notes. Part 9

Algorithms for Problems on Special Instances

Small Vertex Covers – XP and FPT

The Vertex Cover problem in graphs is NP-complete, but if the graph is al-
ready known (or expected) to have some vertex cover with a “small” number
k of nodes, we can still solve it exactly and efficiently in practice.

Let n always denote the number of nodes in the given graph. A naive
way to find a small vertex cover is to test all subsets of k nodes exhaustively.
Elementary combinatorics tells us that this costs O(knk+1/k!) time: Note
that O(kn) time is sufficient to test whether a given set of k nodes is a vertex
cover, and the other factor comes from

(n
k

)
. This time bound is feasible only

for very small k. The bad thing is that k appears in the exponent of n. It
would be much better to have a time bound of the form O(bkp(n)), where
b is a constant base, and p some fixed polynomial. (To get a feeling of the
tremendous difference, try some concrete figures and compare the naive time
bound for Vertex Cover with the bounds we will obtain below.)

A problem with input length n and another input parameter k is said to
be in the complexity class XP if it can be solved in O(nf(k)) time, where
f is any computable function. A problem with input length n and another
input parameter k is called fixed-parameter tractable (FPT) if it can be
solved in O(f(k) · p(n)) time, where f is any computable function (usually
exponential) and p is some polynomial. We may write O∗(f(k)) instead of
O(f(k) · p(n)) if we want to suppress the polynomial factor and stress the
more important parameterized part of the complexity.

In the following we show that Vertex Cover is not only an XP problem
but an FPT problem. The basic algorithm is: Take an uncovered edge (i, j)
and put node i or node j in the solution. Repeat this step recursively in
both branches, until k nodes are chosen or all edges are covered.

1



Upon every decision (i or j) we create new branches, hence the whole
process has the form of a recursion tree that we call a bounded search
tree. Since at most k nodes of the graph are allowed in a solution, the tree
has depth at most k, thus at most 2k leaves and O(2k) nodes. If some leaf
represents a vertex cover, we have found a solution, otherwise we know that
there is no solution. To bound the time complexity, it remains to check
how much time we need to process any node of the search tree: In a simple
implementation we may copy the whole graph, delete in one copy all edges
incident to i, and delete in one copy all edges incident to j (because these
edges are already covered). The main work is copying. Here we observe
that the whole graph can have at most kn edges, otherwise no vertex cover
of size k can exist. Hence copying costs O(kn) time, and the overall time is
O(2kkn) = O∗(2k).

Although this is already much better than naive exhaustive search, fur-
ther improvements would still be desirable. Here, the more important part
is the exponential factor 2k. Can we improve the base 2 and thus make the
algorithm practical for somewhat larger k?

The weakness of the search tree algorithm above is that it considers
single edges and selects only one vertex at a time. If we could select more
vertices, we could generate our solutions faster. Now observe: For any node
i, we have to take i or all its neighbors, in order to cover all edges incident to
i. It might be good to apply this branching rule on nodes i of high degree.
But what if the graph has no high-degree nodes?

If all degrees are at most 2, the graph consists of simple paths and cycles,
and the problem is trivial. Thus we can assume (worst case!) that there is
always a node of degree 3 or larger. In a branching step we take either 1
node or 3 nodes (or more). How large is our search tree?

This can be analyzed by recurrence equations, similar to the analysis
of divide-and-conquer algorithms. Let T (k) be the number of leaves of a
search tree for vertex covers of size k. Due to our branching rule we have
T (k) = T (k−1)+T (k−3). To figure out what function T is, we assume that
it has the form T (k) = xk with an unknown constant base x. Our recurrence
becomes xk = xk−1 +xk−3, which simplifies to x3 = x2 + 1. This equation is
called the characteristic equation of the recurrence. Numerical evaluation
shows x ≈ 1.47, which is much better than 2. Researchers have invented
more tricky branching rules for Vertex Cover and further accelerated the
branching process. Meanwhile the best known base is below 1.3.

Anyway, we have shown the time bound O(1.47kkn) = O∗(1.47k).

2



Kernelization

For the problem of finding a vertex cover of size at most k we have shown the
time bound O(1.47kkn) = O∗(1.47k). Can we also improve the polynomial
factor?

Observe that any node i of degree larger than k is necessarily in the
solution. (If we do not select i, we have to take all neighbors, but these are
too many.) Thus we can put aside all nodes of degree larger than k. This
can be done in O(kn) time. There remains a graph where all nodes have
degree at most k. Now, k vertices can cover at most k2 of the remaining
edges. Hence, if the remaining graph has more than k2 edges, we know that
there is no solution. This also means: In the positive case we have found
a subgraph with at most k2 edges, such that it remains to solve the hard
Vertex Cover problem on this small graph only. The resulting time bound
is O(1.47kk2 + kn). Note that we got rid of the product of the exponential
term and n.

The above process is called kernelization, and the remaining small
graph is called a problem kernel. We skip the exact technical definition,
however we observe that the size of the kernel depends only on the parameter
k, but not on the original number n of nodes, and the kernelization needs
only polynomial time.

To put these results in a much more general context: Kernelization is
just a formal way of preprocessing an input, and it is widely used also outside
FPT problems. The idea is to take away simple parts of an instance and
give a miniaturized instance of the hard problem to the actual algorithm.
Thus, the underlying algorithm has to deal only with the hard part of the
instance, and if this is significantly smaller than the original instance, this
saves much computation time.

3


