Advanced Algorithms Course.
Lecture Notes. Part 7

Repeat Until Success

An important “algorithm” is to repeat a random experiment until success:
Suppose that we have a 0, 1-valued random variable that attains value 1
with probability p. We observe this variable many times independently,
until result 1 appears for the first time. What is the expected number of
iterations needed? Intuitively one would think 1/p, but intuition is often
misleading, therefore we’d better derive this result by calculation. Although
this is still a basic exercise, a strict formal treatment would already be a bit
laborious: Our probability space is the Cartesian product of infinitely many
copies of a probability space with two events. However we may skip some
technicalities and think in a semi-formal way. Let F; be the event that the
ith iteration is successful. Then Pr(FE;) = (1 — p)~'p. Note that the first
1 — 1 iterations have failed, and the probabilities can be multiplied, because
the trials are independent. Hence our expected value is

S Pr(E) =3 (1)i
=1 =1

Now some standard algebra (that we omit here) confirms the result 1/p.

Global Minimum Cut Revisited

In a graph G = (V, E) with n nodes and m edges we wish to find a global
min-cut (4, B), that is, a partitioning V' = AUB such that the number of cut
edges (those edges between A and B) is minimized. Motivations include the
assessment of reliability of networks, finding clusters in graphs, and efficient
hierarchical computation of distances in graphs.

We can easily reduce the problem to Minimum Cut, by trying all pos-
sible pairs of sources and sinks s,t € V. But since flow and cut algorithms

are somewhat sophisticated, it may be pleasant to see an extremely sim-
ple randomized algorithm that solves the Global Min-Cut problem as well.
However this comes with a price: Success is no longer guaranteed. We will
get a correct solution “only” with high probability.

For simplicity we discuss only the basic randomized algorithm for Global
Min-Cut, although faster algorithms are known. In the following we have
to allow graphs with parallel (multiple) edges. The algorithm works as
follows. In every step, choose an edge e = (u,v) at random and contract it.
Contraction means: shrink e, identify u,v (merge them into a new vertex),
and delete all edges that have been parallel to e (they would be loops at the
new vertex). Iterate this step until two nodes remain. This two-node graph
represents a cut, in the obvious sense. The whole procedure is repeated a
certain number of times from scratch, and finally we output the smallest cut
found in this way.

It may seem that this algorithm has nothing to do with the problem.
It just repeatedly contracts random edges. However, the intuition is that
a small cut has a chance not to be affected by these random contractions,
thus being preserved in the end. Still, the analysis which has to confirm this
intuition is not so obvious. It uses a clever combination of several elementary
tools from probability theory.

Consider any global min-cut (A, B). Let F' denote the set of its cut
edges, and k := |F'|. After j steps of the algorithm, clearly the contracted
graph has n — j nodes. Moreover, every node has degree at least k, since
otherwise the node and its complement set would already form a global min-
cut smaller than k, a contradiction. Hence at least k(n — j)/2 edges still
exist after j steps. Therefore, the probability that unfortunately some of
the k edges in F' is contracted in the next step is at most 2/(n — j). That
means, our specific cut (A, B) is returned with probability at least

n—3 n—3
[1G=2/(n=35)=[[((n—35-2)/(n~-73)=2/n(n-1)
j=0 =0

after the contraction procedure. (However, think carefully: Why is it correct
to multiply the probabilities, although the events “step j avoids to select an
edge from F” are certainly not independent?) This is a small probability, but
we repeat this O(m)-time contraction procedure sufficiently often: Each run
fails with probability 1—2/n(n—1), but a simple calculation shows that some
of O(n?) runs succeeds, subject to a small constant failure probability. We
can make this failure probability arbitrarily small by increasing the hidden

constant factor in O(n?). (Note the superficial similarity to approximation
schemes.)

About Randomized Algorithms in General

Randomized algorithms should not be confused with average-case analy-
sis. All randomness is with the algorithms, while nothing is assumed about
the probability distribution of inputs. The analysis results (expected time,
probability of a correct solution, etc.) hold for every fixed instance, not only
averaged on all instances.

The Global Minimum Cut algorithm is an example of a Monte Carlo
algorithm. These are algorithms that run in polynomial time in the worst
case, but whose result can be wrong with some small probability. However
this failure probability can be reduced exponentially by repeated runs. The
latter technique is called amplification. By way of contrast, a Las Vegas
algorithm gives always the correct result, but only an expected time bound
can be shown, and the running time can be much higher in the worst case.

