
Advanced Algorithms Course.

Lecture Notes. Part 4

Reductions and Approximability

The class of optimization problems where a solution within a constant factor

of optimum can be obtained in polynomial time is denoted APX (approx-

imable). There exist problems in APX that do not have a PTAS (unless

P=NP). They are called APX-hard problems. Such results are shown by

reductions, in analogy to NP-hardness results. But beware: A polynomial-

time reduction from one problem to another does in general not imply any-

thing about their approximability. Reductions that establish APX-hardness

must also preserve the solution sizes within constant factors. Here we do

not develop the whole theory but we illustrate this type of reductions by an

example.

A dominating set in a graph is a subset D of nodes such that every node

is in D or has at least a neighbor in D. The Dominating Set problem asks

to find a dominating set with a minimum number of nodes, in a given graph

with n nodes. A minimum dominating set can be approximated within a

factor O(log n) of the optimum size. (This is left to an exercise.) A natural

question is whether we can approximate dominating sets better.

The answer is negative, due to the following reduction from Set Cover to

Dominating Set. Consider any instance of the Set Cover problem, on a set

U of size n, and with subsets Si ⊂ U with unit weights. Let I denote the set

of all indices i. We construct a graph G = (V,E) with node set V = I ∪ U .

We insert all possible edges in I. Furthermore we insert all edges between

i ∈ I and u ∈ U where u ∈ Si. Now we prove that the size of a minimum set

cover equals the size of a minimum dominating set in G. Note that every

set cover of size k corresponds to a subset of I which is also a dominating

set of size k. Conversely, let D be any dominating set of size k in G. If D

contains some u ∈ U , we can replace it with some adjacent node i ∈ I. This

1



yields a set of size at most k which is still dominating. This way we get rid

of all nodes in D ∩ U and finally obtain a dominating set no larger than k,

which is entirely in I. Such a dominating set corresponds to a set cover of

size at most k. Together this implies equality.

This polynomial-time and size-preserving reduction shows the following:

If we could approximate Dominating Set with a factor better than O(log n),

then we could also do so for Set Cover, which is believed to be impossible.

Hence our Dominating Set approximation is already as good as it can be.

Summarizing Remarks about Approximation Algorithms

Most of the practically relevant optimization problems are NP-complete,

nevertheless solutions are needed. We call an algorithm an approximation

algorithm if it runs in polynomial time and gives a solution close to optimum.

The approximation ratio is the ratio of the values of the output and of

an optimal solution, minimized or maximized (depending on what type of

problem we have) over all instances. It can be analyzed, e.g., by relating

“simple” upper and lower bounds on the values of solutions, or by relating

items in the optimal and in the algorithmic solutions in some clever way.

Some approaches to the design of approximation algorithms are: greedy

rules, solving dual problems (pricing methods), and LP relaxation followed

by rounding, and there are many more techniques.

All NP-complete decision problems are “equally hard” subject to poly-

nomial factors in their time complexities, but they can behave very differ-

ently as optimization problems. Even different optimization criteria for the

same problem can lead to different complexities. Some problems are approx-

imable within a constant factor, or within a factor that mildly grows with

some input parameters, and some can be solved with arbitrary accuracy in

polynomial time. In the latter case we speak of polynomial-time approxima-

tion schemes. One should also notice that the proved approximation ratios

are only worst-case results. The quality of solutions to specific instances is

often much better. On the other hand, there exist problems for which we

cannot even find any good approximation in polynomial time. One example

is finding maximum cliques in graphs. However, such “hardness of approx-

imation” results require much deeper proof methods than in the theory of

NP-completeness.

2



Network Flow with Applications

Maximum Flow and Minimum Cut

Let G = (V,E) be a directed graph where every edge e has an integer

capacity ce > 0. Two special nodes s, t ∈ V are called source and sink,

all other nodes are called internal. We may suppose that no edge enters s

or leaves t. A flow is a function f on the edges such that: 0 ≤ f(e) ≤ ce
holds for all edges e (capacity constraints), and f+(v) = f−(v) holds for

all internal nodes v (conservation constraints), where we define f−(v) :=∑
e=(u,v)∈E f(e) and f+(v) :=

∑
e=(v,u)∈E f(e). (As a menominic aid: f−(v)

is consumed by node v, and f+(v) is generated by node v.) The value of the

flow f is defined as val(f) := f+(s) − f−(s). (Actually we have f−(s) = 0

if no edge goes into s.) The Maximum Flow problem asks to compute a

flow with maximum value.

The problem can be written as an LP, but there is also a special-purpose

algorithm for Maximum Flow, that we outline now.

For any flow f in G (not necessarily maximum), we define the residual

graph Gf as follows. Gf has the same nodes as G. For every edge e of

G with f(e) < ce, Gf has the same edge with capacity ce − f(e), called a

forward edge. The difference is obviously the remaining capacity available

on e. For every edge e of G with f(e) > 0, Gf has the opposite edge with

capacity f(e), called a backward edge. By virtue of backward edges we

can “undo” any amount of flow up to f(e) on e by sending it back in the

opposite direction. The residual capacity is defined as ce − f(e) on forward

edges and f(e) on backward edges

Next, let P be any simple directed s − t path in Gf , and let b be the

smallest residual capacity of all edges in P . For every forward edge e in

P , we may increase f(e) in G by b, and for every backward edge e in P ,

we may decrease f(e) in G by b. It is not hard to check that the resulting

function f ′ on the edges is still a flow in G. We call P an augmenting

path and f ′ is the augmented flow, obtained by these changes. Note that

val(f ′) = val(f) + b > val(f).

The generic Ford-Fulkerson algorithm works as follows: Initially let

f := 0. As long as a directed s − t path in Gf exists, augment the flow f

(as described above) and update Gf .

To prove that Ford-Fulkerson outputs a maximum flow, we must show:

If no s− t path in Gf exists, then f is a maximum flow.

3



The proof is done via another concept of independent interest: An s− t

cut in G = (V,E) is a partitioning of V into sets A,B with s ∈ A and t ∈ B.

The capacity of a cut is defined as c(A,B) :=
∑

e=(u,v):u∈A,v∈B ce.

For subsets S ⊂ V we define f+(S) :=
∑

e=(u,v):u∈S,v /∈S f(e) and f−(S) :=∑
e=(u,v):u/∈S,v∈S f(e). Remember that val(f) = f+(s)−f−(s) by definition.

We can generalize this equation to arbitrary cuts and obtain:

val(f) =
∑

u∈A(f+(u) − f−(u)). This follows easily from the conservation

constraints. When we rewrite the last expression for val(f) as a sum of flows

on edges, then, for edges e with both nodes in A, then the terms +f(e) and

−f(e) cancel out in the sum. It remains val(f) = f+(A) − f−(A). This

finally implies:

val(f) ≤ f+(A) =
∑

e=(u,v):u∈A,v/∈A
f(e) ≤

∑
e=(u,v):u∈A,v/∈A

ce = c(A,B)

In words: The flow value val(f) is bounded by the capacity of any cut (which

is also plausible).

Next we show that, for the flow f returned by Ford-Fulkerson, there

exists a cut with val(f) = c(A,B). This implies that the algorithm in fact

computes a maximum flow.

Clearly, when the Ford-Fulkerson algorithm stops, no directed s− t path

exists in Gf . Now we specify a cut as desired: Let A be the set of nodes v

such that some directed s−v path is in Gf , and B = V \A. Since s ∈ A and

t ∈ B, this is actually a cut. For every edge (u, v) with u ∈ A, v ∈ B we have

f(e) = ce (or v should be in A). For every edge (u, v) with u ∈ B, v ∈ A

we have f(e) = 0 (or u should be in A because of the backward edge (v, u)

in Gf ). Altogether we obtain val(f) = f+(A)− f−(A) = f+(A) = c(A,B).

In words: The flow value val(f) equals the capacity of a minimum cut.

The last statement is the famous Max-Flow Min-Cut Theorem.

Another important observation is that the Ford-Fulkerson algorithm re-

turns a flow where all f(e) are integer. This follows immediately from the

augmentation rules, by induction on the number of steps.

4



Time Complexity of Computing Flows and Cuts

Let n and m denote the number of nodes and edges, respectively.

The Ford-Fulkerson algorithm may need O(mC) time, where C is any

trivial upper bound on the flow value, e.g., the sum of capacities of the

edges at the source. The factor m comes from the time needed to find an

augmenting path, and the factor C is there since at most C augmentations

are needed. This time bound is not polynomial in the input length.

Note that the “generic” Ford-Fulkerson algorithm does not specify which

augmenting path to take. By a careful choice of augmenting paths one can

make the Ford-Fulkerson algorithm polynomial. Dinitz’ algorithm is the

Ford-Fulkerson algorithm that always takes the shortest augmenting path,

i.e., one with the smallest number of edges. It runs in O(n2m) time. Another

strategy considers only edges with the largest residual capacities, such that

val(f) increases a lot in every augmentation step It achieves O(m2 logC)

time. In both cases the time analysis is somewhat technical, therefore we onit

it. There exist even faster Maximum Flow algorithms based on somewhat

different principles (called Preflow-Push algorithms).

Once we have a maximum flow f , we can also compute a minimum

cut (A,B) in O(m) additional time. The proof of the Max-Flow Min-Cut

Theorem hints to an algorithm for this: A is the set of all nodes reachable

from s via directed edges in the residual graph Gf , and B is the rest.

5


