
Advanced Algorithms Course.

Lecture Notes. Part 3

An Approximation Scheme for Knapsack

So far we have seen some approximation algorithms whose approximation

ratio on an instance is fixed, either an absolute constant or depending on

the input size. But often we may be willing to spend more computation

time to get a better solution, i.e., closer to the optimum. In other words, we

may trade time for quality. A polynomial-time approximation scheme

(PTAS) is an algorithm where the user can freely decide on some accuracy

parameter ε and gets a solution within a factor 1 + ε or 1 − ε of optimum,

and within a time bound that is polynomial for every fixed ε but grows as

ε decreases. The actual choice of ε may then depend on the demands and

resources. A nice example is the following Knapsack algorithm.

In the Knapsack problem, a knapsack of capacity W is given, as well as

n items with weights wi and values vi (all integer). The problem is to find

a subset S of items with
∑

i∈S wi ≤W (so that S fits in the knapsack) and

maximum value
∑

i∈S vi. Define v∗ := max vi.

You may already know that Knapsack is NP-complete but can be solved

by some dynamic programming algorithm. Its time bound O(nW ) is polyno-

mial in the numerical value W , but not in the input size n, therefore we call it

pseudopolynomial. (A truly polynomial algorithm for an NP-complete prob-

lem cannot exist, unless P=NP.) However, for our approximation scheme we

need another dynamic programming algorithm that differs from the most

natural one, because we need a time bound in terms of values rather than

weights. (This point will become more apparent later on.) Here it comes:

1



Define OPT (i, V ) to be the minimum (necessary) capacity of a knapsack

that contains a subset of the first i items, of total value at least V . We can

compute OPT (i, V ) using the OPT values for smaller arguments, as follows.

If V >
∑i−1

j=1 vj then, obviously, we must add item i to reach V . Thus we

have OPT (i, V ) = wi +OPT (i−1, V −vi) in this case. If V ≤
∑i−1

j=1 vj then

item i may be added or not, leading to

OPT (i, V ) = min(OPT (i− 1, V ), wi +OPT (i− 1,max(V − vi, 0))).

Since i ≤ n and V ≤ nv∗, the time is bounded by O(n2v∗). As usual in

dynamic programming, backtracing can reconstruct an actual solution from

the OPT values.

Now the idea of the approximation scheme is: If v∗ is small, we can afford

an optimal solution, as the time bound is small. If v∗ is large, we round

the values to multiples of some number and solve the given instance only

approximately. The point is that we can divide all the rounded values by

the common factor without changing the feasible solutions. In the following

we work out this idea precisely. We do not specify what “small” and large”

exactly means in the above sketch. Instead, some free parameter b > 1

controls the problem size.

First compute new values v′i as follows: Divide vi by some fixed b and

round up to the next integer: v′i = dvi/be. Then run the dynamic program-

ming algorithm for the new values v′i rather than vi.

Let us compare the solution S found by this algorithm, and the op-

timal solution S∗. Since we have not changed the weights of elements,

S∗ still fits in the knapsack despite the new values. Since S is optimal

for the new values, clearly
∑

i∈S v
′
i ≥

∑
i∈S∗ v′i. Now one can easily see:∑

i∈S∗ vi/b ≤
∑

i∈S∗ v′i ≤
∑

i∈S v
′
i ≤

∑
i∈S(vi/b + 1) ≤ n +

∑
i∈S vi/b. This

shows
∑

i∈S∗ vi ≤ nb +
∑

i∈S vi, in words, the optimal total value is larger

than the achieved value by at most an additional amount nb.

Depending on the maximum value v∗ we choose a suitable b. By chosing

b := εv∗/n, the above inequality becomes
∑

i∈S∗ vi ≤ εv∗ +
∑

i∈S vi. Since

trivially
∑

i∈S∗ vi ≥ v∗, this becomes
∑

i∈S∗ vi ≤ ε
∑

i∈S∗ vi +
∑

i∈S vi, hence

(1 − ε)
∑

i∈S∗ vi ≤
∑

i∈S vi. In words: We achieve at least a 1 − ε fraction

of the optimal value. The time is O(n2v∗/b) = O(n3/ε). Thus we can

compute a solution with at least 1− ε times the optimum value in O(n3/ε)

time.

2



For any fixed accuracy ε this time bound is polynomial in n (not only

pseudopolynomial as the exact dynamic programming algorithm). However,

the smaller ε we want, the more time we have to invest.

The presented approximation scheme is even an FPTAS, which is stronger

than a PTAS. Here is the definition: A fully polynomial-time approxi-

mation scheme (FPTAS) is an algorithm that takes an additional input

parameter ε and computes a solution that has at least 1− ε times the opti-

mum value (for a maximization problem), or at most 1+ε times the optimum

value (for a minimization problem), and runs in a time that is polynomial

in n and 1/ε.

Approximation Algorithms Using Linear Programming

A linear program (LP) is the following task: Given a matrix A and vectors

b, c, compute a vector x ≥ 0 with Ax ≥ b that minimizes the inner product

cTx. This is succinctly written as:

min cTx s.t. x ≥ 0, Ax ≥ b.
The entries of all matrices and vectors are real numbers. The ≥ relation

between vectors means the componentwise ≥ relation, and 0 denotes the

zero vector.

LPs can be solved efficiently (theoretically in polynomial time). However,

algorithms for solving LPs are not a subject of this course. LP solvers are

implemented in several software packages. Here we use them only as a “black

box” to solve hard problems approximately.

A simple example of this technique is again Weighted Vertex Cover in

a graph G = (V,E). The problem can be reformulated as min
∑

i∈V wixi
s.t. xi + xj ≥ 1 for all edges (i, j). This is almost an LP, but the catch is

that the xi must be 1 or 0 (for node i is in the vertex cover or not), whereas

the variables in an LP are real numbers. Hence we cannot use an LP solver

directly. (Weighted Vertex Cover is NP-complete after all ...)

Instead we solve a so-called LP relaxation of the given problem and then

construct a solution of the actual problem “close to” the LP solution. If

this works well, we should get a good approximation. In our case, a possible

LP relaxation is to allow real numbers xi ∈ [0, 1] for the moment. Let S∗

be a minimum weight vertex cover, and wLP the total weight of an optimal

solution to the LP relaxation. Clearly wLP ≤ w(S∗). Let x∗i denote the

value of variable xi in the optimal solution to the LP relaxation. These

numbers are in general fractional. To get rid of these fractional numbers

3



we do the most obvious thing: we round them! More precisely: Let S

be set of nodes i with x∗i ≥ 1/2. Variables corresponding to nodes in S

are rounded to 1, others are rounded to 0. S is obviously a vertex cover.

Moreover, wLP ≤ w(S∗) implies w(S) ≤ 2w(S∗), since by rounding we have

at most doubled the variable values from the LP relaxation. This gives

us yet another algorithm with approximation ratio 2. – We know already

simpler 2-approximation algorithms for Weighted Vertex Cover, but this was

only an example to demonstrate the general technique of LP relaxation and

rounding.

4


