
Advanced Algorithms Course.

Lecture Notes. Part 2

Set Cover

This is a very fundamental problem abstracted from a variety of applications.

Given a set U of n elements, and m subsets Si of U with positive weights

wi, find a set cover with minimal total weight. A set cover is a selection

from the given sets Si whose union is still the whole of U .

The Set Cover problem is NP-complete, as it generalizes the Vertex

Cover problem. You should be able to give a polynomial-time reduction

from Vertex Cover.

A natural greedy rule is to successively add sets Si to the solution, that

cover as many new elements as possible per unit of weight. More formally:

Let R denote the set of yet uncovered elements, initially R := U . In every

step we put some Si with minimal wi/|Si ∩ R| in the solution and update

R. This is repeated until R = ∅.
For the following analysis we use the so-called Harmonic sum. It is

defined as H(n) :=
∑n

i=1 1/i. Asymptotically it behaves roughly as lnn.

(But note that H(n) is quite different from lnn for small n.)

Let C be the greedy solution, and C∗ an optimal set cover, with weight

w∗. The natural the algorithm is, deriving a good bound for its approxima-

tion ratio is not so trivial. The key idea of the analysis is to “charge” the

covered elements as follows.

Let us define cs := wi/|Si ∩R| for each s ∈ Si ∩R. Intuitively, cs is the

cost paid by the element s for being covered: The total costs wi for the step

are shared between the newly covered elements. The weight of the greedy

solution C obviously equals the sum of these costs:
∑

s∈U cs =
∑

Si∈C wi.

Now consider any set Sk = {s1, . . . , sd}, where the elements of Sk are

sorted in the order they are covered by the greedy algorithm. We study

how much is paid by the elements of Sk. Just before an element sj is

1

covered we have |Sk ∩R| ≥ d− j + 1, hence wk/|Sk ∩R| ≤ wk/(d− j + 1).

Let Si be the set that covers this sj in the greedy algorithm. Since the

algorithm always picks an Si with minimum weight-per-element ratio, this

means wi/|Si∩R| ≤ wk/|Sk∩R| ≤ wk/(d−j+1). Summation of all element

costs in Sk now yields
∑

s∈Sk
cs ≤ H(|Sk|)wk.

Finally, if d denotes the maximum size of the sets Si, the previous in-

equality becomes H(d)wi ≥
∑

s∈Si
cs for each i. We also use the trivial

inequality
∑

Si∈C∗
∑

s∈Si
cs ≥

∑
s∈U cs. Now we can put things together:

H(d)w∗ = H(d)
∑

Si∈C∗ wi ≥
∑

Si∈C∗
∑

s∈Si
cs ≥

∑
s∈U cs =

∑
Si∈C wi.

This shows that the greedy algorithm has an approximation ratio H(d) ≈
ln d. It may be disappointing that the ratio is not constant and grows with

d. But it grows only logarithmically, it is constant when the size d is fixed

(a frequent case in applications), and ratio H(d) is also the best possible

for any polynomial Set Cover algorithm. (The latter fact is very hard to

prove. Such hardness-of-approximation results are far beyond the reach of

this course. But we mention the fact for your information.)

Weighted Vertex Cover – The Pricing Method

We are given a graph G = (V,E), where we index the nodes by integers,

that is, V = {1, . . . , n}, and node i has a weight wi. The problem is to find

a vertex cover of minimum weight. (A vertex cover is a subset of nodes that

intersects all edges.) This problem is a special case of Weighted Set Cover

(why?). Thus we can apply the previous H(d)-approximation, where the

maximum node degree takes over the role of d. But, luckily, we can obtain a

better approximation ratio. It will be the constant 2. This is not only a nice

result as such, but also the method we present is of more general relevance in

Optimization. Again we use prices, but now already in the algorithm itself,

not only in the analysis. The technique is called the pricing method, or

primal-dual method, because the given “primal” problem is attacked using

some “dual” problem (see below).

Every edge e will pay a price pe ≥ 0 for being covered. We will set these

prices later. We say that the prices are fair if
∑

e=(i,j) pe ≤ wi for all nodes i.

That is, the payments of all edges incident to i do not exceed the weight of

i. If prices are fair, we clearly have
∑

i∈S
∑

e=(i,j) pe ≤ w(S) for any subset

S of nodes. If S is a vertex cover, every edge appears at least once in this

sum, thus
∑

e∈E pe ≤
∑

i∈S
∑

e=(i,j) pe ≤ w(S). This inequality says that

the sum of (any) fair prices is a lower bound on the cost of any vertex cover,

2

in particular, for the cost of an optimal vertex cover.

Thus, instead of tackling the problem directly, we may construct prices

that are fair but as large as possible (this is going to be our “dual” problem)

and then construct somehow a cheap vertex cover from these fair prices. In

fact, this is easier than one might expect:

We call a node i tight if
∑

e=(i,j) pe = wi. Initially let all pe = 0. Now we

take some e without tight endnodes and simply raise pe until one endnode

is tight. This step is repeated as long as possible. After that, let S be the

set of tight nodes.

This was the algorithm! We skip a detailed time analysis, but it is easy

to see that the algorithm terminates (since every step produces a new tight

node) and the time is polynomial.

Clearly S is a vertex cover, otherwise we could do more steps. Moreover,∑
e=(i,j) pe = wi for all i ∈ S, by definition of S. Summation over i ∈ S

gives
∑

i∈S
∑

e=(i,j) pe = w(S). Every edge e appears at most twice in this

sum, hence w(S) ≤ 2
∑

e∈E pe. This shows that w(S) has at most twice the

weight of an optimal vertex cover.

Final remark: In the unweighted case, when wi = 1 for all nodes i,

the edges with positive prices pe = 1 form a maximal (i.e., non-extendible)

matching in the graph, and the vertex cover consists of all nodes contained

in the edges of this matching.

3

