
Advanced Algorithms Course.

Lecture Notes. Part 11

Randomization Continued

Remark on the Complexity of Random Choices

Randomized algorithms make some random choices. That is, some random

number is generated, and the next step of the algorithm depends on its

value. In the randomized algorithm examples so far we did not bother

about the time complexity of random number generation itself, because the

time for that was included in the overall time bound. But in some other

algorithms the random choices may abound, and they may dominate the

overall time bound. Consequently, the time bound may depend on the

model assumptions for random number generation.

A reasonable model is to count the number of random bits that are

used. Random bits are independently set to 0 or 1 with probablity 1/2. For

instance, selecting a random element from a set of n elements costs dlog2 ne
random bits, generated in O(log n) time.

Chernoff Bounds

This is a very useful general tool to bound the probabilities that certain

random variables deviate much from their expected values. Here we will

derive one version of this bound and then apply it to a simple load balancing

problem.

Let X be sum of n independent 0-1 valued random variables Xi taking

value 1 with probability pi. Clearly E[X] =
∑
i pi. For µ := E[X] and δ > 0

we ask how likely it is that X > (1 + δ)µ, in other words, that X exceeds

the expected value by more than 100δ percent.

Since function exp is monotone, this inequality is equivalent to exp(tX) >

exp(t(1+δ)µ) for any t > 0. Exponentiation and this free extra parameter t

1



seem to make things more complicated, but we will see very soon why they

are useful.

For any random variable Y and any number γ > 0 we have that E[Y ] ≥
γPr(Y > γ). This is known as Markov’s inequality and follows directly from

the definition of E[Y ]. For Y := exp(tX) and γ = exp(t(1 + δ)µ) this yields

Pr(X > (1 + δ)µ) ≤ exp(−t(1 + δ)µ)E[exp(tX)].

Due to independence of the terms Xi we have

E[exp(tX)] = E[exp(
∑
i

tXi)] = E[
∏
i

exp(tXi)] =
∏
i

E[exp(tXi)]

=
∏
i

(pie
t + 1− pi) =

∏
i

(1 + pi(e
t − 1)) ≤

∏
i

exp(pi(e
t − 1))

= exp

(
(et − 1)

∑
i

pi

)
≤ exp((et − 1)µ).

This gives us the bound exp(−t(1+δ)µ) exp((et−1)µ). We can arbitrarily

choose t. With t := ln(1 + δ) our bound reads as
(

eδ

(1+δ)(1+δ)

)µ
.

The base depending on δ looks a bit complicated, however: Using eδ ≈
1 + δ one can see that the base is smaller than 1. For any fixed deviation δ

the base is constant, and the bound decreases exponentially in µ. The more

independent summands Xi we have in X, the smaller is the probability of

large deviations. A direct application of the simple Markov inequality would

be much weaker (therefore the detour via the exponential function).

Load Balancing

In order to show at least one application, consider the following simple load

balancing problem: m jobs shall be assigned to n processors, in such a

way that no processor gets a high load. In contrast to the Load Balancing

problem we studied earlier, no central “authority” assigns jobs to processors,

but every job chooses a processor by itself. We want to install a simple

rule yet obtain a well balanced allocation. (An application is distributed

processing of independent tasks in networks.) To make the rule as light-

weight as possible, let us choose for every job a processor randomly and

independently. The jobs need not even “talk” to each other and negotiate

places. How good is this policy?

2



We analyze only the case m = n. What would you guess: How many

jobs end up on the same processor? To achieve clarity, consider the random

variable Xi defined as the number of jobs assigned to processor i. Clearly

E[Xi] = 1. The quantity we are interested in is Pr(Xi > c), for a given

bound c. Since Xi is a sum of independent 0-1 valued random variables

(every job chooses processor i or not), we can apply the Chernoff bound.

With δ = c− 1 and µ = 1 we get immediately the bound ec−1/cc < (e/c)c.

But this is only the probability bound for one processor. To bound the

probability that Xi > c holds for some of the n processors, we can apply the

union bound and multiply the above probability with n. Now we ask: For

which c will n(e/c)c be “small”?

At least, we must choose c large enough to make cc > n. As an auxiliary

calculation consider the equation xx = n. For such x we can say:

(1) x log x = log n and

(2) log x+ log log x = log log n.

Here we have just taken the logarithm twice. Equation (2) easily implies

log x < log logn < 2 log x.

Division by (1) yields

1/x < log log n/ log n < 2/x.

In other words, xx = n holds for some x = Θ(log n/ log log n).

Thus, if we choose c := ex, our Chernoff bound for every single processor

simplifies to 1/xex < 1/(xx)2 = 1/n2. This finally shows: With probability

1− 1/n, each processor gets O(log n/ log logn) jobs. This answers our ques-

tion: Under random assignments, the maximum load can be logarithmic,

but it is unlikely to be worse.

For m = Θ(n log n) or more jobs, the random load balancing becomes

really good. Then the load is larger than twice the expected value Θ(log n)

only with probability below 1/n2. Calculations are similar as above.

Verifying a Matrix Product

Randomized algorithms are surprisingly simple and powerful for many prob-

lems, however they come with only probabilistic “guarantees”. A Las Vegas

algorithm may be fast on expectation, but in a particular case we may have

to wait longer for a result, which can be criticial in real-time application.

3



A Monte Carlo algorithm can err with some small but positive probablity.

Maybe this means only a slightly worse result, but maybe it has desastrous

consequences if the unlikely case happens. Then we have to judge whether

the risk is acceptable. This does not depend so much on the mathemat-

ical problem solved, but on the real-world context where the algorithm is

applied.

Amzingly, randomization can also lead to more safety: Even the result

of a complex deterministic calculation can be false due to hardwre failure, a

corrupted file or transmission errors. If accuracy is very important, it would

be good to efficiently verify the result afterwards.

A famous example is Freivald’s verifier for matrix multiplication. Many

technical calculations use linear algebra, and matrix multiplication is a basic

operation there. Let A and B be two n× n matrices. Suppose that we got

their product C and want to check its correctness. The naive idea is to

recalculate AB and compare with C. But matrix multiplication costs O(n3)

time. There exist subcubic algorithms, but they are barely practical. In any

case, significantly more than quadratic time is needed.

The idea for fast verification is to check whether ABx = Cx for some vec-

tor x. Note that this requires only O(n2) time, since only matrix-vector mul-

tiplications are involved: We first compute the vector Bx and then A(Bx).

If really AB = C then, obviously, we get ABx = Cx. The converse is not

true: We may “incidentally” observe ABx = Cx although AB 6= C. But

how likely is this event? Specifically, let x be a vector whose entries are 0

or 1 (the real numbers, not Boolean values), independently and with prob-

ability 1/2. Assume AB 6= C, hence the matrix D := AB − C has some

nonzero entry, without loss of generality in the first row and column. Let

dT denote the first row of D. Let d′ and x′ be the vector d and x, without

the first entries d1 6= 0 and x1, respectively. Then the first entry of Dx

equals dTx = d1x1 + d′Tx′. For any fixed choice of x′, the second term is

constant. Now remember that the xi are independent. Thus x1 is still 0 or

1 with conditional probabilty 1/2. Moreover, since d1 6= 0, at least one of

these cases yields dTx 6= 0. We conclude that a false C passes the test with

probability at most 1/2. Finally we can repeat this O(n2) time test with t

independent vectors x to reduce the error probability to 1/2t.

4


