
Advanced Algorithms Course.

Lecture Notes. Part 10

Finding a Path by Color Coding
and Dynamic Programming on Subsets

This is a beautiful combination of ideas from randomized and FPT algo-

rithms and a variant of dynmaic programming..

We consider the following k-path problem. Given a graph G and an

integer k, find a path of exactly k nodes that does not cross itself, i.e., each

of the k nodes shall be visited only once.

What is the motivation? Why should one be interested in finding such a

k-path? Here is one real application from computational biology: Molecules

like proteins, DNA, RNA are long sequences. Under some experimental

conditions one cannot observe these sequences directly but obtain only in-

formation about pairs of short molecules that could possibly be neighbors

in a sequence. The reconstruction of sequences from such local information

leads to the problem of finding simple paths, of at least some prescribed

length, in the graph of possible neighborhood relationships.

At first glance the k-path problem looks simple. We may start from

some node and try all possible paths of length k. But if we do that naively

by breadth-first-search, we need O(nk) time, showing that the problem is in

XP. In fact, finding a k-path is easy if the graph has diameter at least k.

Then it suffices to compute shortest paths between all pairs of nodes, which

is possible in polynomial time. Since some of these paths has the desired

length, and no nodes appear repeatedly on the path, we get a solution. But

ironically, a smaller diameter makes the problem hard. Now we devise an

algorithm that works also in this case.

The idea of color coding is to use k colors and assign one color to each

node, randomly and independently. (Do not confuse it with the graph color-

ing problem where adjacent nodes must get different colors. This restriction

1

is not applied here.) Then, we only search for a k-path where all k colors

appear. The point is that this subproblem can be solved in O(2kn2) time!

Now we show how this is done, and how this result is used to solve the

original problem. (A simpler but also slower way is to try all permutations

of the colors, which takes O(k!n2) time.)

Let c(v) denote the color of node v. We do dynamic programming

on subsets, specifically, on all 2k subsets C of the colors. For every set

C and every node v we compute a value p(C, v) which is 1 if there exists

a path of |C| nodes that ends in v and contains exactly the colors from C,

otherwise we define p(C, v) := 0. For |C| = 1, we obviously have p(C, v) = 1

if and only if C = {c(v)}. Next suppose that we know all p(C, v) with

|C| = i. Then all p(C ′, v) with |C ′| = i+ 1 are obtained as follows. We have

p(C ′, v) = 1 if and only if p(C ′ \ {c(v)}, u) = 1 for some node u adjacent to

v. The time bound is easy to see.

The algorithm succeeds if some path with k nodes (if it exists) actually

carries all k colors. Let P be a fixed path of k nodes. It can be colored in kk

different ways, and k! colorings are good. Hence the success probability in

every attempt is k!/kk, which is essentially 1/ek due to Stirling’s formula. It

follows that we need O(ek) iterations to find a k-path with high probability,

and if we do not detect some, we can report that no k-path exists, with an

arbitrarily small error probability. The time is O((2e)kn2) = O∗((2e)k) in

total.

Dynamic Programming on Trees

Problems that are NP-complete in general graphs can become rather easy

in special graph classes. Often it happens in practice that the input to a

graph problem is a tree. (For example, many networks are hierarchically

structured.) Most problems on trees can be solved by bottom-up dynamic

programming. We illustrate the principle by the Weighted Vertex Cover

problem which is also equivalent to the Weighted Independent Set problem.

In the given tree we distinguish an arbitrary node r as the root. All

edges are oriented away from the root. This defines a directed tree T . For

every node, let Tv denote the subtree with root v, consisting of v and all

nodes reachable from v via directed edges. We denote the weight of a node

v by w(v). For every v we define OPT (v, 1) and OPT (v, 0) as the minimum

weight of a vertex cover in Tv with v and without v, respectively. What we

want is the minimum of OPT (r, 1) and OPT (r, 0).

2

These values are computed as follows. If v is a leaf, we immediately have

OPT (v, 1) = w(v) and OPT (v, 0) = 0. Now let v be an inner node, and

v1, . . . , vd the children of v. If v is not in the vertex cover, we have to take

all children, hence

OPT (v, 0) =
d∑

i=1

OPT (vi, 1).

. If v is in the vertex cover, we can independently decide for any child to

take it or not, and the minimum value is optimal. Hence we have

OPT (v, 1) = w(v) +
d∑

i=1

min(OPT (vi, 1), OPT (vi, 0)).

That’s all! The running time is O(n), since every node is involved in only

constantly many calculations for its parent node. It is recommended to re-

flect upon the question why our OPT function needed the second (Boolean)

argument.

As a side remark, the unweighted Vertex Cover problem can even be

solved by a greedy algorithm on trees.

3

