
TDA206/DIT370 DISCRETE OPTIMIZATION 2018 ·PERIOD 3 ·SUBJECT V

6 The Traveling Salesperson Problem

The Traveling Salesperson Problem (TSP)1 is a very important discrete optimization
problem that occurs in a variety of contexts. It is typically phrased as finding the
cheapest round trip through n cities, where each connection between cities incurs a
certain non-negative cost and no connection can be used twice. However, it occurs in
contexts as varied as clustering, circuit design and genome assembly. Before we get
into the details, let’s get a few definitions over with.

Definition 1 (Hamilton cycle). A Hamilton cycle is a cyclic subgraph of a graph G which
visits each vertex exactly once. If G admits such a cycle, it is called a Hamiltonian graph.

Deciding whether a graph is Hamiltonian is NP-complete.

Definition 2 (Euler cycle). An Euler cycle is a trail (connected sequence of edges) of a
graph G that visits each edge exactly once. If G admits such a cycle, it is called an Eulerian
graph.

If the graph is connected, then G is Eulerian if and only if all of its nodes have even
degree. If it has more than one component, it cannot be Eulerian. This means that it is
trivial to decide whether a graph is Eulerian. Also, finding such a cycle can be done in
O(|E|), e.g. using Hierholzer’s algorithm.

Definition 3 (Spanning tree). A spanning tree is a connected subgraph of G which
contains no cycles and contains all nodes.

Hamilton cycles, Euler cycles and spanning trees are all examples of spanning sub-
graphs of G, i.e. connected subgraphs containing all vertices. For weighted graphs,
these definitions give rise to minimization problems, where we want to find the smallest
spanning subgraph of a certain kind. Finding the cheapest Euler tour can be solved in
polynomial time by first deciding whether such a cycle exists, and if it does, by solving
the Route Inspection Problem, sometimes called the Chinese Postman Problem, which
is polytime as well. The minimum spanning tree can be computed in polytime using
simple algorithms such as Kruskal’s.

Definition 4 (Traveling Salesperson Problem). Given an edge-weighted graph, find the
minimum-weight Hamilton path in G, if one exists.

Note that we only talk about undirected graphs here. The extension to digraphs,
where different costs are incurred for different directions is called the asymmetric TSP.

1This used to be called the “Travelling Salesman Problem”, which is falling out of favor for obvious
reasons. The P is therefore sometimes re-interpreted to stand for “person” instead of “problem”, so the term
“TSP problem” is not considered an example of RAS syndrome anymore.

TSP is NP-hard, since it contains the case of uniform edge weights, which amounts
to finding a Hamilton cycle if one exists, the decision version of which is NP-complete
(see above). Hence it is important to consider bounds on the optimal solution as well
as approximation results.

6.1 Lower bounds

Let H∗ be the optimal round trip which solves TSP. Let K be H∗ with one edge removed.
Obviously, c(K)≤ c(H∗). However, notice that K is a, not necessarily minimal, spanning
tree of our graph. Hence, the cost of the minimum spanning tree cannot be greater
than that of K , so we have

c(MST)≤ c(K)≤ c(H∗)

In other words, the cost of the minimum spanning tree is a most as high as that of the
optimal round trip. This idea is the basis for another bound. Say we knew the optimal
tour H∗. Let P be the path obtained from H∗ if we delete a node v as well as the two
edges e1, e2 that are incident to v. Then, obviously,

c(H∗) = c(e1) + c(e2) + c(P)

Since we know neither H∗ nor P, we have to derive a bound instead. Let A≤ c(e1)+c(e2)
and B ≤ c(P), then A+ B ≤ c(H∗) is a lower bound on the TSP solution. Such an A can
be found by picking the two cheapest edges incident to v, and B can be defined using
the weight of the minimum spanning tree in G \ {v}. Hence

c1-tree
v :=min

e∈E

�

c(e1) + c(e2)
�

� e1, e2 ∈ δ(v), e1 6= e2

	

+ c(MST(G \ {v}))

is a lower bound on H∗. This is known as the 1-tree bound.
The 1-tree bound is the basis for the Held-Karp bound. The problem with MST-based

bounds is that the difference between c(MST) and c(H∗) can be quite large, since the
MST has no degree-constraints and thus far more flexibility to pick cheap edges. We
would therefore like to modify our problem in a way that makes this gap small, by
favoring MST for which the node degrees are close to 2. For that purpose, we try to
change edge weights such that the cost for the MST increases as much as possible,
while the cost of every Hamilton cycle in the graph changes by the same known constant
Λ. We can then subtract Λ from the 1-tree weight to get a tighter lower bound. The
first property is not hard to achieve, however, changing the edge weights such that the
second property holds is a little trickier. Obviously, we could pick some constant λ and
add it to each edge weight, thereby increasing the cost for H∗ by λn. Unfortunately,
this barely gets us anywhere, since the MST will contain the exact same edges as before.

2018-03-06 ·14:37 1

TDA206/DIT370 DISCRETE OPTIMIZATION 2018 ·PERIOD 3 ·SUBJECT V

This means we need different λe for different edges, however, we cannot pick those λe
arbitrarily, since we don’t know what edges are contained in H∗, and we don’t want to
alter the result. The solution to this conundrum is in the following observation: every
Hamilton cycle will have to pass through every node in the graph exactly once. If we
associate each node v with a constant λv , then

∑

v∈V λv is the same for all Hamilton
tours. To obtain new edge weights, we simply add λv to each edge incident to v, so
that for all edges e = (v, w) ∈ V , we get λe := λv +λw.

Theorem 1 (Held-Karp bound). Let G = (V , E) be a graph with edge weights c(e) for
all e ∈ E. Let λv be some constant for each node v ∈ V . Let G′ = (V , E) with edge weights
c(e′) := c(e) − λu − λv for all e = (u, v). Let C be the 1-tree bound for G′. Then the
Held-Karp bound

C + 2
∑

v∈V

λv

is a lower bound for c(H∗).

It might seem a bit strange to phrase this approach by subtracting a negative number
λv instead of adding a positive one. As we will see later, the Held-Karp bound is an
example of Lagrange relaxation, and the negative sign comes from that proof.

There are various schemes to improve λe by iteratively changing λv and recalculating
the MST. The general idea is to punish high node degrees in the MST. Whenever node v
has a degree higher than 2, λv is changed such that edges incident to v become costlier.
On the other hand, if v is a leaf, i.e. its degree is 1, λv is changed to make its incident
edges cheaper.

6.2 Approximation results

Aside from its NP-hardness, the notoriety of TSP is due to the following result:

Theorem 2 (TSP inapproximability). Unless P=NP, there exists no polytime α-
approximation for TSP for any constant α≥ 1.

Proof. This is easy to prove by contradiction. We know that deciding whether a graph
G is Hamiltonian or not is NP-complete. We turn G into a weighted graph Gα, by adding
a weight of 1 to each of its edges, and adding an edge of weight αn for each edge
missing in G (n is the number of nodes). Now assume we had an α-approximation
heuristic for TSP. In case G has a Hamilton cycle, it would correspond to the optimal
solution for TSP in Gα, and the cost of the TSP tour would be n. The heuristic would
yield a result of cost at most αn. If G is not Hamiltonian, the shortest round-trip would
have to go through at least one of the new edges with weight αn in Gα, so its cost
would be greater than αn, and the heuristic cannot do better than the optimal solution.

Hence, we would always be able to distinguish between cases where G is Hamiltonian
or not in polynomial time, which is NP-complete.

In other words, it is NP-hard to even find a constant-factor approximation for TSP!
This is obviously bad news, and demonstrates the importance of algorithms to solve
NP-hard problems optimally with reasonable effort. There are, however, special cases
in which polytime constant-factor approximation is possible and efficient:

Definition 5 (Metric TSP). A TSP instance is called metric iff it has a complete graph, i.e.
there is an edge between any two node, and for any set of three nodes, the edge weights
observe the triangle inequality, i.e. c(u, w)≤ c(u, v) + c(v, w).

The most important case of this is the Euclidean TSP, in which the nodes represent
points in the plane and edge weights represent the Euclidean distance (length of line
segment between points). Metric TSP has two important approximation schemes:
the MST heuristic yields a 2-approximation, and the Christofides heuristic yields a
3
2 -approximation.

The MST heuristic is very simple:

1. Compute a minimum spanning tree on G.

2. Pick an arbitrary start node and walk along the edges, making the sharpest possible
right-turn at each vertex (alternatively, choose the sharpest possible left turn).
This creates a cycle of nodes, which visits some nodes more than once.

3. To create the Hamilton cycle, simply ignore all but the first occurrence of each
node, and take the set of edges between adjacent nodes in that cycle.

It is easy to see that this is a Hamiltonian cycle, since the MST contains all nodes,
and by ignoring all but the first occurrences of a node, we have a cycle. For the
approximation ratio, note that in step 2, we use each edge twice, so the cost incurred in
step 2 is 2c(MST). By the triangle inequality, the shortcuts we create in step 3 cannot
be longer than the path we replace, so we don’t increase the total cost in step 3. Since
the cost of an MST is a lower bound on the cost of the shortest Hamilton cycle, we
obtain a 2-approximation of TSP.

The Christofides heuristic uses a similar idea, but adds more light edges to the initial
set we traverse:

• Compute a minimum spanning tree T for G.

• Select all nodes in G which have an odd degree in T (there will always be an even
number of them).

2018-03-06 ·14:37 2

TDA206/DIT370 DISCRETE OPTIMIZATION 2018 ·PERIOD 3 ·SUBJECT V

• Calculate a minimum weight maximum matching M for those nodes. This will
always be a perfect matching.

• Combine T and M into a multigraph C , i.e. there can be multiple edges between
pairs of nodes. The result is Eulerian, since we add exactly one edge to each
odd-degree vertex in T .

• Compute an Euler cycle in C .

• Compute a Hamilton cycle based on this Euler cycle by skipping over repeated
nodes, just like in the MST heuristic.

One can show that, due to the triangle inequality, this yields a 3
2 -approximation for

metric TSP.
For many decades, the Christofides heuristic was the best known approximation

algorithm for metric TSP. However, it was only known that the metric TSP cannot be
approximated within a factor of 123

122 , which suggested that 3
2 might not have been the

best we can do. Indeed, there have been quite a few breakthroughs within the last years
which led to better approximation ratios; the following article provides a high-level
overview, as well as references for these exciting developments: https://www.wired.
com/2013/01/traveling-salesman-problem/. A more technical, peer-reviewed work
can be found at https://link.springer.com/article/10.1007/s00493-014-2960-3.

6.3 ILP formulation

The ILP formulation of TSP uses binary variables to select edges, minimizing the total
edge weight. Typically, the following set of constraints is used:

Degree constraints (DC) Each node must be entered and exited exactly once, so its
degree in the solution must be 2. These are also called 2-factor constraints.

Subtour eliminination constraints (SEC) Degree constraints do not guarantee that
the result is a single cycle, but could consist of the union of smaller cycles called
subtours. SEC must ensure that any feasible solution is a single cycle.

There are various ways to define SEC once the degree constraints are in place. The
first one is often called the outer formulation of SEC: Consider a cycle (not necessarily
Hamiltonian) on a node set C ⊆ V . There are no edges between V and V û, due to the
DC. On the other hand, if we choose any smaller subset S ⊂ C , there will be at least two
edges connecting nodes in S to nodes outside of S. In order to eliminate subtours, we
hence require that any true subset of V has at least two edges “crossing its boundaries”.
It is easy to see that this eliminates subtours, by contradiction: if a subtour existed on
some C ⊂ V , then C would violate that constraint. The ILP then becomes

mincᵀx

s.t. ∀v ∈ V :
∑

e∈δv xe = 2
; ⊂ S ⊂ V :

∑

v∈S,w∈Sû xv,w ≥ 2
xe ∈ B

An equivalent, and somewhat easier SEC is the so-called inner formulation. Note that
any cycle (Hamiltonian or not) has as many edges as it has nodes. We can hence require
for all subsets S except V itself that it has less edges than nodes, so it is impossible to
close a cycle on S:

mincᵀx

s.t. ∀v ∈ V :
∑

e∈δv xe = 2
; ⊂ S ⊂ V :

∑

v,w∈S xv,w ≤ |S| − 1
xe ∈ B

6.4 Cutting-plane method

Typically, the LP relaxation can be used as an easy bound for the ILP solution. However,
the ILP formulation above presents us with an additional problem: Since we need one
SEC for each subset S, we have exponentially many constraints, so even formulating
the ILP and LP relaxation explicitely takes exponential time and is therefore as hard as
solving TSP by brute force!

In convex optimization, we often encounter problems problems situations like these.
The cutting plane method (CPM) is a general approach for tackling these problems. Say
we have a hard problem P and an easy to solve relaxation R of P. R is obtained by
dropping or relaxing constraints from P. For instance, R could be the LP relaxation
of an ILP, where the integrality constraints are relaxed. We can also have situations
where P is an LP, but has way too many constraints (e.g. exponentially many), so that
even checking feasibility explicitly is prohibitive. In that case, R could be P with some
constraints removed. The CPM proceeds as follows:

1. Obtain x∗R by solving R.

2. Find a halfspace constraint (the “cutting plane”) which is obeyed by all feasible
solutions to P, but violated by x∗R. This “cuts off” a subset of the feasible region of
R, including x∗R , without “cutting into” the feasible region of P (finding such a cut
is called the separation problem).

2018-03-06 ·14:37 3

https://www.wired.com/2013/01/traveling-salesman-problem/
https://www.wired.com/2013/01/traveling-salesman-problem/
https://link.springer.com/article/10.1007/s00493-014-2960-3

TDA206/DIT370 DISCRETE OPTIMIZATION 2018 ·PERIOD 3 ·SUBJECT V

3. Repeat until x∗R is feasible in P, thus solving P, the solution is close enough or no
further cut can be obtained.

In ILP, this approach is useful for refining LP relaxations. Given some set of vectors
M ⊆ Rn, let conv M be the smallest convex set such that M ⊆ conv M . This is called
the convex hull of M . For integer points, the convex hull of all feasible integer points
is a polytope contained within the polytope of the LP relaxation, and thus could in
principle be described by a finite set of half-space constraints just as an LP. The problem
is that the inequalities are not explicitly known from the LP relaxation. Instead, we
can use the CPM to solve an ILP:

1. Obtain x∗LP as the solution of the LP relaxation.

2. Find a halfspace constraint which is obeyed by all feasible ILP solutions, but
violated by x∗LP. This “cuts off” the vertex x∗LP from the LP polytope without
“cutting into” the ILP polytope.

3. Repeat until x∗LP is integer and thus optimally solves the ILP, cᵀx∗LP is good enough,
or no further cut can be obtained.

There are many different ways to add these constraints, depending on the problem
at hand. If the reason for using the CPM is the number of constraints in the problem
itself, we simply add those which is violated by the relaxed solution. If we need to find
unknown cutting planes for ILP, one of the most generally applicable methods is using
Chvátal-Gomory cuts: if λᵀA for some vector λ ∈ [0,1]n, then λᵀAx i also integer for
integer x. Hence, if we have a general constraint of the form Ax≤ b with b ∈ Rn, we
also know that

λᵀAx≤
�

λᵀb
�

For instance, if we have constraints x1 + 2x2 ≤ 4 and x1 ≤ 1, then for λ= (1
2 , 1

2)
ᵀ, we

get x1 + x2 ≤
�

5
2

�

= 2. Finding good λ is not always easy, and we might still end up
adding exponentially many cutting planes when trying to solve an ILP (NP-hard) using
a series of LP relaxations (polytime). Furthermore, this approach alone is impractical
due to numerical issues.

For many ILP, however, there exist better, problem-specific cutting planes. For the
TSP, the idea is to simply ignore the SEC in the beginning and add them one-by-one
to separate a non-integer ILP solution from the integer polytope. This way, we can
avoid adding unnecessary cutting planes and drastically reduce their numbers. Solving
the LP relaxation, one of two things can happen: either, the non-zero edges separate
into different subtour components C1, C2, . . ., in which case the SEC for each Ci can
be added as a separating hyperplane to the problem. However, after a while no such
clear components will occur, so we must find a better way to find subsets violating the

SEC; in other words, we need to find the edge set of minimum weight that separates
V into S and Sû; if the value of the cut is < 2, S and Sû violate an SEC. This is called
the minimum weight cut problem for weighted graphs. Remember that we can solve
the minimum s-t cut problem in polytime. Obviously, a minimum weight cut is just a
minimum s-t cut for some s ∈ S and t ∈ Sû, and can be find by taking the minimum
s-t cut among all s, t ∈ V , s 6= t. If the components are separated, the minimum cut
is 0 There are more efficient algorithms than that, but the important message is that
we can find SEC violations in polytime. We hence have an algorithmic approach for
solving the LP relaxation of TSP (algorithm 1)

Algorithm 1 A cutting-plane method to solve the LP relaxation of TSP. The goal is to
avoid adding huge numbers of subtour elimination constraints, by cutting off SEC-
violating solutions.

Solve LP relaxation without SEC to obtain edge-weighted graph G.
while Minimum cut in G is < 2 do . Some SEC is violated by S and Sû.

Add SEC for vertex sets S and Sû to LP. . This is a cutting plane.
Solve LP relaxation to obtain edge-weighted graph G.

All constraints (except for integrality) are satisfied.

After finding a solution to that reduced problem, we try to find a constraint that is
violated by that solution and add it to our problem formulation. We solve again and
continue to do so until we get a solution that is a Hamilton cycle.

6.5 Lagrangian relaxation

There exists a different relaxation technique. Rather than enforcing constraints, viola-
tions are penalized in the objective function. For instance, the minimization LP

mincᵀx

s.t. Ax≥ b

can be relaxed by adding a positive penalty term whenever Ax< b:

mincᵀx+λᵀ(b−Ax)

s.t. λ≥ 0

For TSP, there exists a surprising Lagrange relaxation that allows us to find and
improve feasible solutions using combinatorial graph algorithms, without ever explicitly
formulating the exponentially many SEC. In fact, this formulation turns out to be the
Held-Karp bound described earlier. The idea is that, instead of dropping the integrality

2018-03-06 ·14:37 4

TDA206/DIT370 DISCRETE OPTIMIZATION 2018 ·PERIOD 3 ·SUBJECT V

constraints as in LP, we relax the degree constraints
∑

e∈δv xe = 2. As a result we get an
ILP, but one which can be solved exactly using a combinatorial algorithm. Pick some
vertex v̂, and consider the following problem:

mincᵀx+
∑

v∈V

λv

∑

e∈δ(v)

xe − 2

s.t. λv̂ = 0
∑

e∈E xe = n
∑

e∈δ(v̂) xe = 2
SEC

x ∈ Bn

Notice that we added the constraint
∑

e∈E xe = n. While it did not occur in the original
ILP formulation, it was implied by the degree constraints, since we had n nodes, each
node had to have 2 edges and each edge is incident to 2 nodes. It was thus a valid
constraint in the original ILP and we could have added it there without changing the
feasible region – it would simply have been redundant.

Let’s take a closer look at those new constraints. Since we select two edges incident
to v̂ and select n edges in total, we select n− 2 edges between n− 1 nodes in G \ {v̂}.
The SEC ensure that we have no cycles. By the outer SEC, we also know that

∀; ⊂ S ⊂ V \ {v̂} :
∑

e∈δS

xe ≥ 1

so the edges on G \ {v̂} form a connected graph. Since it has no degree constraints, no
cycles and is connected, these constraints describe a spanning tree on G \ {v̂}! Now
lets look at the objective function:

mincᵀx−
∑

v∈V

λv

∑

e∈δ(v)

xe − 2

=min
∑

e∈E

ce xe −
∑

v∈V

λv

∑

e∈δ(v)

xe + 2
∑

v∈V

λv

Since
∑

v∈V λv

∑

e∈δ(v) sums over all nodes and incurs a weight to each incident edge,
every edge is hit twice, once by each of its incident nodes, thus

∑

v∈V

λv

∑

e∈δ(v)

xe =
∑

(u,w)=e∈E

(λu xe +λw xe)

so the objective function becomes

min
∑

e∈E

ce xe −
∑

(u,w)=e∈E

(λu xe +λw xe) + 2
∑

v∈V

λv

=min2
∑

v∈V

λv +
∑

(u,w)=e∈E

(ce −λu −λw)xe

As we can see, the solution to the Lagrangian relaxation is a minimum spanning tree
with edge weights modified by node weights λv . This is exactly the Held-Karp bound,
and we can solve the ILP obtained by Lagrange-relaxing the degree constraints can be
solved efficiently by a combinatorial algorithm: pick the two cheapest edges incident
to v̂, then solve MST on G \ {v̂}! There are ways to find the best λ for Lagrangian
relaxations using duality, which we did not have time to talk about in the lecture. For
the TSP, it amounts to the approach we briefly sketched for the Held-Karp bound. It
can be shown that, for the best λ the solution is at least as good as the LP relaxation;
in practice, it often turns out to be much better.

7 Branch-and-bound

Branch-and-bound (B&B) refers to a large class of algorithms for solving hard optimiza-
tion problems optimally, or at least within some provable bound. It comes in many
shapes and forms. For a minimization problem over a feasible domain Ω, we consider
the following setting:

• It is hard to compute an optimal solution directly.

• Subsets of the feasible region can be described efficiently, e.g. by a reasonably
sized set of constraints.

• For specific subsets of the feasible region, it is easy to calculate a lower bound fL
and find a feasible solution within the set as an upper bound.

The properties above are used to recursively split the feasible set (the branching step)
and obtain bounds on f ∗ for each of those regions (the bounding step). Specifically, we
maintain the best (global) feasible solution found so far across all regions as an upper
bound, and compute a (local) lower bound for each region. Whenever the local lower
bound is greater or equal than the best solution found so far, we now that this region
cannot contain any solution that would improve upon the one we already have. Thus,
the region and all its subsets can be safely ignores. This cutting off of subtrees in the
recursion is called pruning. While B&B is still an exponential-time algorithm for most
instances, pruning decreases the exponent and yields more acceptable running times.

2018-03-06 ·14:37 5

TDA206/DIT370 DISCRETE OPTIMIZATION 2018 ·PERIOD 3 ·SUBJECT V

Algorithm 2 A general, non-recursive branch-and-bound algorithm for minimization
problems over a feasible domain Ω. A is a general container supporting push() and
pop() operations. If A is a stack, the search tree is expanded in depth-first search
(DFS) order. If it is a queue, it is expanded in breadth-first search (BFS) order. A
could also be a more complex container class, such as a priority queue (which yields a
best-first search). Note that A is used here for purposes of generality and clarity. In
implementations, it is often not explicitly used; instead, B&B is implemented recursively
using the appropriate call order for different traversal schemes.

procedure BRANCH&BOUND(Ω)
x∗ arbitrary . Current optimal solution, possibly infeasible.
f ∗←∞ . Global upper bound on f ∗.
A← {Ω} . Container for unexpanded subregions.
while |A|> 0 do . Potential solutions left.
Φ← pop(A) . Expand search tree by a subregion Φ (recurse).
if Φ contains a feasible solution then
(fL ,xL)← lowerBound(Φ) . Get lower bound on current subregion.
if fL < f ∗U then . Potentially better solution in subregion? Bound if not.

if xL is feasible and fL < f ∗ then . Found better solution in subregion.
f ∗← fL . Update objective.
x∗← xL . Update optimal solution.
f ∗U ← f ∗ . Bound future suboptimal solutions.

else . No better solution found, have to branch on subsets.
(fU ,xU)← feasibleSolution(Φ) . Get current upper bound.
f ∗←min

�

f ∗, fU

	

. Tighten global upper bound.
Partition Φ into Φ1,Φ2, Branch into subsets.
Push all Φi to A . Mark subsets as unexpanded.

return (f ∗,x∗) . f ∗ =∞ means the problem was infeasible.

Algorithm 2 contains the pseudocode for a general version of B&B for a minimization
problem.

It is not unusual to improve bounds on a subregion using the cutting-plane algorithm.
The extra effort often turns out to be worthwhile, in particular to obtain tight bounds
early on, which prunes off large parts of the search tree. Such an approach is called
branch-and-cut, and has been successfully applied to TSP to great benefit.

Since we would like to enforce the encounter of feasible solutions at some point, the
right branching scheme is crucial. For ILP, we know that the solution cannot contain
non-integer values. If we use LP relaxation to get a lower bound, we simply choose
any coordinate x i = c, where c is non-integer. We branch by adding the first constraint
x i ≤ bcc to create Φ1, and dce ≤ x i to create Φ2. Note that this introduces hyperplanes

orthogonal to the x i-axis, and hence an integer facet for the feasible polytope. The
hope is that, by accumulating such hyperplanes, at some point further down the search
tree the optimal solution to the LP relaxation will be integer and thus a feasible ILP
solution. If we split in at an arbitrary position bcc< p < dce instead, we might end up
recursing forever (at least until we exhaust the machine precision for floating point
numbers).

Given the results discussed in previous lectures, we get the following bounds for a
primal minimizing ILP:

• Solution to LP relaxation

• Solution to LP relaxation of dual (same as above by strong duality)

• Any feasible solution for dual and its LP relaxation

• Solution to Lagrangian relaxation

• Solutions to any other relaxation technique

2018-03-06 ·14:37 6

	The Traveling Salesperson Problem
	Lower bounds
	Approximation results
	ILP formulation
	Cutting-plane method
	Lagrangian relaxation

	Branch-and-bound

