Nils Anders Danielsson

2018-11-26

X-computability.

A self-interpreter for y.

Reductions.

More problems that are or are not computable.

vV v v Vv Vv

More about coding.

X _
computability

X-computable functions

Assume that we have methods for representing
members of the sets A and B as closed y
expressions.

A partial function f € A — Bis x-computable
(with respect to these methods) if there is a
closed expression e such that:

» Va € A.
if fais definedthene a | " fa'.
» Va € A, vE Exp.

if e a'| vthen fais defined and
v="Ffa".

X-computable functions

A special case:

A (total) function f € A — Bis y-computable if
there is a closed expression e such that:

»Vac A e a'|l fa.

An alternative characterisation

» Define CExp ={p € Fzp | pis closed }.
» The semantics as a partial function:

[_] € CExzp — CExp
[pl=v ifpdo

» fe A— Bis y-computable iff

Jee CEzp. Vae A e a']="fa"

A closed x expression is represented by True() if it
terminates, and by False() otherwise.

Representation

» The choice of representation is important.

> In this course (unless otherwise noted or
inapplicable): The “standard” representation.

» It might make sense to require that the
representation function " _ ' is “computable”.

» However, how should this be defined?

Examples

» Addition of natural numbers is y-computable:

add € N xN—N
add (m,n) = m+n

» The intensional halting problem is not
x-computable:

halts € CExp — Bool
halts p = if p terminates then true else false

> The semantics [_] is computable.

Self-

Interpreter

Self-interpreter

Goal: Define eval € CFExp satisfying:
» Ve, v € CEp,
if el vthen eval" e ' | " v "
» Ve, v € CExp,
if eval” e’ | v then there is some v such that

r A

edvand v =" v

Or: Ve € CExp. Jeval"e'] ="[e] .

rec eval = \e.case e of

(..
}

lambda z e | lambda z ¢

Lambda(z, ¢) — Lambda(z,)

e; J lambda z e e vy elz—vy] v
apply e; e | v

Apply(e;, ;) — case eval e; of
{Lambda(z,) — eval (subst z (eval e5) €)

}

Exercise: Define subst.

elr<recze]llv

recxel v

Rec(z, e) — eval (subst x Rec(x, €) e)

esd* vs

const ¢ es | const ¢ vs

Const(¢, es) — Const(c, map eval es)

Exercise: Define map.

Self-interpreter

el const ¢ vs Lookup c bs zs €
/

¢ [xs < vs| > €’ e’ | v

case e bs v

Case(e, bs) — case eval e of
{ Const(c, vs) — case lookup ¢ bs of
{Pair(xs, ¢') — eval (substs xs vs €’)

}
1

Exercise: Define lookup and substs.

Self-interpreter

rec eval = A e.case e of
{Lambda(z, ¢) — Lambda(z, €)
: Apply(eq, e5) — case eval e; of
{Lambda(z, €) — eval (subst x (eval ey) €)}
;Rec(x,e) — eval (subst z Rec(z, e) e)
; Const(c, es) — Const(c, map eval es)
; Case(e, bs) — case eval e of
{Const(c, vs) — case lookup c bs of
{Pair(xs, ') — eval (substs xs vs €') }
}

}

Note: subst, map, lookup and substs are
meta-variables that stand for (closed) expressions.

halts € CExzp — Bool
halts p =
if p terminates then true else undefined

X-decidable

A function f € A — Bool is x-decidable if it is
x-computable. If not, then it is y-undecidable.

X-semi-decidable

A function f € A— Boolis x-semi-decidable if there
is a closed expression e such that, for all a € A:
» If fa=truethen e a ' | " true.

» If fa = false then ¢" a ' does not terminate.

The halting problem is semi-decidable

The halting problem:

halts € CExp — Bool
halts p = if p terminates then true else false

A program witnessing the semi-decidability:

Ap. (A _.True()) (eval p)

Reductions

Reductions (one variant)

A x-reduction of fe A — Bto g € C— D consists

of a proof showing that,
if g is x-computable, then fis xy-computable.

Reductions (one variant)

A x-reduction of fe A — Bto g € C— D consists

of a proof showing that,
if g is x-computable, then fis xy-computable.

» If fis reducible to g, and fis not computable,
then g is not computable.

» Last week we proved that the halting problem
is undecidable by reducing another problem
to it.

More
(un)decidable
problems

Semantic equality

» Are two closed x expressions semantically
equal?

equal € CExp x CExzp — Bool

equal (e, €5) =
if [e;] = [e,] then true else false

» The halting problem reduces to this one:

halts = X p. not (equal Pair(p, " rec z=12"))

Pointwise equality

» Pointwise equality:

pointwise-equal € CExp x CExp — Bool
pointwise-equal (e, e5) =

ifVee CEzp. e €] = [ey €]

then true else false

» The previous problem reduces to this one:

equal = X\ p. case p of
{Pair(ey, e5) —
pointwise-equal
Pair(Lambda(Zero(), ¢,),
Lambda(Zero(), e,))

Termination in n steps

» Termination in n steps:

terminates-in € CExp x N — Bool

terminates-in (e, n) =
ifdv.dpecelo|p|<n
then true else false

|p|: The number of rules in the derivation tree.

» Decidable: We can define a variant of the
self-interpreter that tries to evaluate e but
stops if more than n rules are needed.

Representation

v

How do we represent a y-computable function?

v

Example:

{f€N—=N| fis x-computable }

v

By the representation of one of the closed
expressions witnessing the computability of the
function. However, which one?

One solution: Switch to

v

{(f,e)| fe N—=N, e e CExp, eimplements [},

and define " (f,e) '="e¢".

Quiz

Is the following problem 'x-decidable for
A = Bool? What if A = N?

let Fun={(f,e) | f€ A — Bool,e € CExp,
e implements f} in

pointwise-equal € Fun X Fun — Bool

pointwise-equal’ ((f,-), (g, -)) =
ifVae A. fa= gathen true else false

Hint: Use eval or terminates-in.

Pointwise equality of computable
functions in Bool — Bool

» The function pointwise-equal is decidable.
» Implementation:

pointwise-equal = A\ p. case p of
{Pair(f, g) —
and (equal,, , (eval Apply(f,” True() "))
(eval Apply(g,” True() ')))
(equaly, , (eval Apply(f,” False() "))
(eval Apply(g," False() "))
}

Pointwise equality of computable
functions in Bool — Bool

» The function pointwise-equal is decidable.
» Implementation:

pointwise-equal = A\ p. case p of

{Pair(f, g) —
and (equal,, , (eval " f True() ")
(eval™ g True())
(equaly,, (eval ™ _f False() ")
(eval” g False() "))

Pointwise equality of computable
functions in N — Bool

» The function pointwise-equal’ is undecidable.
» The halting problem reduces to it:

halts = X p. not (pointwise-equal’
Pair(" A n. terminates-in Pair(_code p ,n) ",
"A_.False() "))

Coding

L d
One way to give a semantics to | _

» __ is a constructor of a variant of Exp:

e € Fxp e, € Exp ey € Exp

e € Exp apply e; e5 € Exp
» This variant is the domain of "~ _ "

"_'¢€ FExp— FExp
e =e

L J

"apply e, e, "= Apply("e; " ey)

» Examples:

" f True()' = Apply(f," True() ")
"eval _code e = Apply(" eval’, code e)

» Note that you do not have to use _

-

L
The reduction used above:

halts = A p. not (pointwise-equal’
Pair(" A n. terminates-in Pair(_ codep ,n) ",

"M _.False())
Expanded:

A p. not (pointwise-equal’
Pair(Lambda(" n ',
Apply(" terminates-in ",
Const(" Pair ',
Cons(code p,
Cons(Var(” n"), Nil()))),
"A_.False() "))

Probably not what you want:

Ap."eval p ' = \p. Apply(" eval ,Var("p "))
If p corresponds to 0:

A p. Apply(" eval”,Var(Zero()))

A constant function.

Perhaps more useful:
Ap."eval _codep = Ap.Apply(" eval, code p)
For any expression e:

A

(Ap."eval codep ") e " eval e’

Nothing

Zero()

" Zero() '

rr Zero<) a7
I-I_I-Zero()-l-l-l
I-I_I-I-Zero()-l-l'l-l

S

» The language x is untyped.

» However, it may be instructive to see certain
programs as typed.

Types

» Rep A: Representations of programs of type A.
» Some examples:

True() : Bool
"True() " : Rep Bool
"true " : Bool
Az fx :(A->B)—-A—B
A Az Apply(f,x) : Rep (A — B) —
Rep A — Rep B
eval :Rep A— Rep A
code : Rep A — Rep (Rep A)
terminates-in : Rep A x N — Bool

" terminates-in" : Rep (Rep A x N — Bool)

Types
The reduction used above:

halts = X p. not (pointwise-equal’
Pair(" A n. terminates-in Pair(_code p ,n) ",

"A_.False() "))
If

pointwise-equal’ :
Rep (N — Bool) x Rep (N — Bool) — Bool

then

halts: Rep A — Bool.

More
undecidable
problems

Quiz

Is the following function y-computable?

optimise € CExp — CFExp

optimise e =
some optimally small expression with
the same semantics as e

Size: The number of constructors in the abstract
syntax (FEzp, Br, List, not Var or Const).

Full employment theorem
for compiler writers

» An optimally small non-terminating expression
is equal to rec x = x (for some z).
» The halting problem reduces to this one:

halts = X\ p. case optimise p of
{Rec(z, ¢) — case e of
{Var(y) — False()
: Rec(z, e) — True()

g oo

}

Computable real numbers

» Computable reals can be defined in many ways.
» One example, using signed digits:

Interval =
{(fie) | fEN—={-1,0,1}, e € CExp,
e implements f}

[_] € Interval — [—1,1]
[)= fi- 27!

» Why signed digits? Try computing the first
digit of 0.00000... 4+ 0.11111... (in binary
notation).

Is a computable real number
equal to zero?

» Is a computable real number equal to zero?

is-zero € Interval — Bool
is-zero x = if [z] = 0 then true else false

» The halting problem reduces to this one:

halts = X p. not (is-zero" An.
case terminates-in Pair(_code p , n) of
{True() — One()
; False() — Zero()

H)

» A list on Wikipedia.
» A list on MathOverflow.

https://en.wikipedia.org/wiki/List_of_undecidable_problems
http://mathoverflow.net/questions/11540/what-are-the-most-attractive-turing-undecidable-problems-in-mathematics

X-computability.

A self-interpreter for y.

Reductions.

More problems that are or are not computable.

vV v v Vv Vv

More about coding.

	Introduction
	Χ-computability
	Self-interpreter
	Reductions
	More (un)decidable problems
	Coding
	More undecidable problems
	Summary

