Computability via PCF
Lecture Notes

Peter Dybjer
3 februari 2004

1 PCF

PCF is essentially a sublanguage of Haskell and we will often use Haskell syntax to write PCF-programs.
The main difference between our version of PCF and Plotkin’s! original one is that ours has a polymorphic
type system.

1.1 Types

The PCF-types are generated by the following context-free grammar:
<type> ::= Bool | Nat | (<type> -> <type>) | <typevar>
<typevar> ::=a | b | ¢ |

If we omit the rule for type variables we get the monomorphic PCF-types.
We may omit outer parentheses in type expressions and also use the convention that the function
arrow associates to the right. Thus we may write

a->b->c
a->b->c->4d

as abbreviations of the “official” PCF-types

(a-> (b -> ¢c))
(a-> (M -> (c -> d)))

which are the ones which can be generated by the grammar.
Examples of types are

Bool, Nat, a, Nat -> Nat, a -> Nat, (Bool -> Bool) -> Bool,
The base types Bool and Nat can be defined by the following datatype declarations in Haskell:

data Bool = True | False
data Nat = Zero | Succ Nat

Note that Bool is defined in the standard prelude but that Nat, the type of natural numbers or non-
negative integers, differs from the built-in datatype Int of Haskell. (Sometimes it may be convenient to
use Int as a substitute for Nat when writing PCF-programs in Haskell. This is ok, provided one bears
in mind that one may only use the non-negative integers and the functions programmable in PCF.)

LGordon D. Plotkin, LCF considered as a programming language, Theoretical Computer Science 5, 1977, 223-255

1.2 Terms

The PCF-terms (or synonymously, the PCF-expressions) are generated by the following context-free
grammar:

<term> ::= <var> | (Kterm> <term>) | (\<var> -> <term>) |
True | False | Zero | Succ |
if | pred | isZero | fix

<var> ::=x |y | z |
Here we have used Haskell’s version of A-notation:
(A\x -> e)

In later chapters we will mostly use the usual Ax.e.

We will also use the ordinary conventions for omitting outer parentheses, letting application associate
to the left, and replacing several consecutive \’s by one (see KP? p 153).

The constants True, False, Zero, Succ, if, pred, isZero, fix are called PCF-combinators.
The constructors True, False, Zero, Succ are provided directly by the definitions of Bool and Nat,
whereas the selectors and destructors if, pred, isZero can be defined by

if True de =4d
if False d e = e

pred Zero = Zero
pred (Succ n) =n
isZero Zero = True
isZero (Succ n) = False

(The reader who wishes to implement the PCF-programs in these notes in Haskell should be aware that
there may be name clashes with programs from the standard prelude. It may also be convenient to use
built-in constructs from Haskell such as the if-then-else- construct which gives a readable version of
if.)
The fized point combinator f£ix, which is used for implementing general recursion, is defined by
fix £ = £ (fix f)
The reason for its name is that it returns a fized point of the function f, that is, a solution

x = fix £

to the equation

Examples of PCF-terms are
Zero, Succ Zero, x, Succ x, pred y, fix pred,
but also ill-typed terms such as
Succ True, pred if, fix isZero,

The notions of free and bound variable occurrences are defined in KP 5.3. As usual, a closed term
is one without free variable occurrences, whereas an open term may have such occurrences. A closed
PCF-term is also called a PCF-program.

2Kent Petersson, Berikningsbarhet for dataloger: fran X\ till P, Bokférlaget Aquila 1987

1.3 Abbreviations

When programming in PCF it is convenient to introduce abbreviations, such as the numerals

0 = Zero
1 = Succ O
2 = Succ 1

and various other constants

id =\x > x
loop = fix id
infinity = fix Succ

These abbreviations are always explicit definitions or macros of the form
f=e

where f is a new identifier and e is a PCF-expression possibly containing other abbreviations.

It is easy to obtain an official PCF-expression (as generated by the syntax) by successively replacing
the LHS (the £) of each definition by the RHS (the e). This process is called elimination of explicit
definitions or macro expansion. For example,

Succ 2

is a PCF-expression containing the abbreviation 2. By performing macro expansion we successively get
the expressions

Succ (Succ 1)
Succ (Succ (Succ 0))
Succ (Succ (Succ Zero))

If we finally insert the outer parentheses, which we have omitted by convention, we get the official
PCF-expression

(Succ (Succ (Succ Zero)))

generated by the grammar.
We may introduce abbreviations for types in a similar manner.

1.4 How to transform a Haskell program to a PCF program

The fact that all definitions are explicit (macros) is an important difference between PCF and Haskell.
Firstly, in Haskell, one may introduce new identifiers by function definitions such as
id X =X
plustwo n = Succ (Succ n)

In PCF we must instead write

id =\x > x
plustwo = \n -> Succ (Succ n)

Secondly, recursive definitions are allowed in Haskell, for example

infinity = Succ infinity
loop = loop

In PCF we use the fixed point combinator to turn a recursive definition into an explicit one:

infinity = fix Succ
loop fix id

where we have used that
loop = id loop

The general principle for eliminating a recursive definition is the following. Assume that we have a
recursive definition of the form

foo = ... foo ...

where the RHS is an expression which may contain foo. We first transform it into the form
foo= (\f -> ... £ ...) foo

so that we can use the fixed point combinator
foo = fix (\f -> ... £ ...)

In Haskell one may define functions by pattern matching such as

equiv True True = True
equiv True False = False
equiv False True = False
equiv False False = True

Instead of pattern matching on True and False we use if:

equivm n = if m (if n True False) (if n False True)
Then we can A-abstract

equiv = \m n -> if m (if n True False) (if n False True)

to get a PCF-program.
In Haskell pattern matching can be combined with recursion:

double Zero = Zero
double (Succ n) Succ (Succ (double n))

To transform this to a PCF program we first eliminate the pattern matching using if, isZero and
pred:

double n = if (isZero n)
Zero
(Succ (Succ (double (pred n))))

Then we A-abstract with respect to n:

double = \n -> if (isZero n)
Zero
(Succ (Succ (double (pred n))))

Then we transform the RHS to get it on the form double = f double:

double = (\d n—> if (isZero n)
Zero
(Succ (Succ (d (pred n)))))
double

Finally, we can solve this equation by using fix

double = fix (\d n-> if (isZero n)
Zero
(Succ (Succ (d (pred n)))))

1.5 More recursive datatypes

PCF can be seen as the core of a standard functional language such as ML or Haskell. The most important
feature of such languages which is missing in PCF is the type of lists and other recursive datatypes.
A recursive datatype which we shall use later in the course is the type of binary trees

data Bin a = Leaf a | Branch (Bin a) (Bin a)

This means that we declare two constructors Leaf and Branch. When we define functions on binary trees
we will use a selector isLeaf which is analogous to isZero. It is defined by

isLeaf (Leaf a) = True
isLeaf (Branch as bs) = False

Furthermore, we will use destructors left, right, and peel which are analogous to pred. They are
defined by

left (Branch as bs) = as
right (Branch as bs) = bs
peel (Leaf a) = a

Note that these are all partial functions: left (Leaf a), right (Leaf a), and peel (Branch as bs)
are all undefined.

Exercise. Extend the grammars for PCF-types and PCF-terms in 1.1 to include binary trees and the
operations on them.

Exercise. The type of lists is usually a built in datatype, but could otherwise be given by the following
datatype declaration in Haskell:

List a = Nil | Cons a (List a)

What are suitable selectors and destructors for lists? Extend the grammars for PCF-types and PCF-terms
in 1.1 to include lists and the operations on them.

1.6 Reduction rules for PCF (small step)

Before reading this section it is useful to have read KP 5.3 and 5.3.1. There you will find a detailed
discussion of substitution and S-reduction of pure A-terms. KP discusses full S-reduction of open terms,
where one may reduce an arbitrary [-redex. This is different from the notion of reduction used in
functional programming languages, where one only reduces closed terms, and where one chooses a certain
reduction strategy so that a term can only be reduced in one way (so called deterministic reduction). (See
also the discussion in KP p 164-166 on reduction strategies and reduction in real functional languages.)

There are two principal reduction strategies: applicative order reduction and normal order reduction.
We choose the latter which is the reduction strategy used for “lazy” functional languages such as Haskell.
To emphasize the analogy with parameter passing mechanisms in imperative languages applicative order
is often referred to as call-by-value and normal order as call-by-name.

However, the natural numbers in PCF are not the “lazy” natural numbers you get in Haskell from
the data type declaration

data Nat = Zero | Succ Nat

Instead, for reasons of simplicity, we assume that natural numbers are always evaluated fully, that is, the
computation of a natural number will not terminate until it has reached 0 = Zero,1 = Succ Zero,2 =
Succ (Succ Zero), ... This is the way integers (of type Int) in Haskell are computed. To give a complete
explanation of lazy evaluation of natural numbers is more complicated, see Section 1.9 which is optional
reading.

We first give the rules for one-step reduction and write e —1 €' if e can be reduced to e’ in one step.
From this we can define many-step reduction and write e —; e’ if e can be reduced to €' in 7 steps by
adding the rules

e —p €
which states that e reduces to itself in 0 steps (!), and the rule
e—; e e —je’
€ —Fitj e

which states that if e reduces in i steps to e’ and e’ reduces in j steps to €’ then e reduces to e’ in ¢+ j
steps.
We now give the rules for one-step reduction between closed PCF-terms. In general in this section
a,b,c,d,e, f (possibly with primes) stand for arbitrary PCF-terms.
First, we have rules for computing function applications f a. The first rule states that we reduce the
function part f if possible:
f—=f

fa—=1 fla
The second rule is B-reduction
(Az.e) a —1 e[z = d]

which specifies that when the function part has reached a canonical form Az.e we can substitute the
argument a for the variable z in e. (The general notion of a canonical form is defined below.)
The first rule for conditional expressions states that we reduce the condition b if possible:

b—)lbl
ifbde—; if b de

The other rules state what to do when the condition is a canonical truth-value:

if Truede —1 d
if Falsede —1 e

We then specify the rules for computing the operations on Nat. First we have rules specifying that
we compute the argument of Succ, pred, and isZero, whenever possible.

e— €
Succ e —; Succ e’

e—, €
pred e —; pred e’

e—, €
isZero e —; isZero e’

Then we have rules which specify the result of the operation when the argument is a canonical natural
number (note that n below has to be a fully evaluated natural number 0 = Zero,1 = Succ Zero,2 =
Succ (Succ Zero),...):

pred Zero —; Zero
pred (Succn) —1 n
isZero Zero —1 True

isZero (Succn) —; False

Finally we have the rule for computing the fixed point combinator:

fix f —1 f (fix f)

When computing a PCF-term e we perform repeated one-step reductions

e —1 e
€1 —1 €2

€2 —1 €3

Such reduction-sequences are usually written in an abbreviated way:
€ —1 €61 —>1 €y —>1 €3 1 "
Three things can happen when we perform step-wise reduction of a term:

e The reduction of e terminates with a canonical form v:
e —>1 €6 —»>1 €63 1 €3+ —>1V

The canonical forms cannot be reduced further, that is, there is no e’ such that v —; e’. Moreover,
they are the “good” results of a terminating computation. They include the canonical truth values
True, False; the canonical (or fully evaluated) natural numbers 0 = Zero,1 = Succ Zero,2 =
Succ (Succ Zero), . . .; the closed A-expressions of the form Az.e, where e can be an arbitrary term
(the so called weak head normal forms); the function constants Succ, pred, isZero, fix and if, as
well as expressions of the form if b and if b d, in which if has too few arguments to be reduced.

e The reduction of e terminates with an e’ which cannot be reduced further

e —>1 €61 —>1 €3 —>1 63— —1 e
but the final term €’ in the sequence is still not a canonical form, because it is not a “good” value.
For example, the term Succ True is not a canonical form even though it cannot be reduced.

e The reduction does not terminate:
€ —>1 €] —1 €3 —] €3 —>1 "+ (ad inﬁnitum)
For example, the reductions of loop and infinity do not terminate.

As in KP we write e — €' if e —; €’ for some 7, that is, if e can be reduced in some number of steps to
€', and we do not care how many. It follows that — is a reflexive and transitive relation (why?). One says
that — is the reflezive-transitive closure of —1, since it is the smallest reflexive and transitive relation
containing —y.

Examples. We show that equiv True True —4 True:

equiv True True
= (\b b’ => if b (if b’ True False) (if b’ False True)) True True
-> (\b’ -> if True (if b’ True False) (if b’ False True)) True
-> if True (if True True False) (if True False True)
-> if True True False
-> True

(For typographic reasons we use Haskell-style A and drop the index on the arrows indicating one-step
reductions. Note the difference between = and —: the former indicates macro expansion whereas the
latter indicates one-step reduction.)

We then show the reduction sequences for double applied to 0 and 1. For the sake of readability we
introduce the abbreviations

double
doubledef

First we

->

fix doubledef
(\d n-> if (isZero n)
0
(Succ (Succ (d (pred n)))))

show double 0 —5 0:

double 0O
fix doubledef O
doubledef (fix doubledef) 0
doubledef double 0O
(\d n—> if (isZero n)

0

(Succ (Succ (d (pred n))))) double O
(\n -> if (isZero n)

0

(Succ (Succ (double (pred n))))) O
if (isZero 0)

0

(Succ (Succ (double (pred 0))))
if True

0

(Succ (Succ (double (pred 0))))
0

Then we show double 1 —q; 2:

double 1
fix doubledef 1
doubledef double 1
(\d n-> if (isZero n)
0
(Succ (Succ (d (pred n))))) double 1
(\n -> if (isZero n)
0
(Succ (Succ (double (pred n))))) 1
if (isZero 1)
0
(Succ (Succ (double (pred 1))))
if False
0
(Succ (Succ (double (pred 1))))
Succ (Succ (double (pred 1)))
Succ (Succ (double 0))
(in 5 steps, see above)
Succ (Succ 0)
2

1.7 Rules for evaluation to canonical form (big step)

An alternative way to define the operational semantics of PCF is to give rules relating a PCF-term e to
its canonical form v, written e = v. This is often called “big step semantics” since = is like a “big step”
to the canonical form.

If we

want to include a complexity measure, we write e =>; v if the PCF-term e reaches its canonical

form v in 7 steps. We here give a big step semantics including such a complexity measure.

First,

we have a rule that states that expressions beginning with a A are canonical

AT.e = AT.e

Similarly, the function constants are canonical if they are applied to too few arguments:

if =9 if if b= if b ifbd=qif bd
Succ = Succ pred = pred isZero = isZero
fix = fix

Then there is a rule for evaluating applications stating that the canonical form of f a can be obtained
by first evaluting f to canonical form Az.e, then performing the S-reduction to get e[z := a], which
thereafter is evaluated to canonical form:

f=iAze elx:=a]l=;v
fa=itijv

We also have rules for truth-values. First we state that True and False are canonical:
True = True False = False

Then we have rules for evaluting conditional expressions:

b =; True d=;v b =; False e=;v
ifbde =itl+4j U ifbde = it145 U

Moreover, we have rules for natural numbers (here n ranges over canonical natural numbers 0, 1,2, .. .):

e=;n
Succ e =; Succn

Zero =g Zero

e =; Zero e =; Succn
pred e =41 Zero prede =1 n
e =; Zero e =; Succn
isZero e =;41 True isZero e =;;; False

Finally, there is a rule for fixed points

f(Eix f) =iv
fix f =ir1 U

We should now be able to prove that e =; v iff e =, v and v is a canonical form, but we omit the
proof of this. (The proof is by so-called “rule induction”: both =; and —; are inductively defined, that
is, they are the smallest relations satisfying their respective rules.)

1.8 Applicative order evaluation

To obtain applicative order evaluation we just need to change the rule of S-reduction, which now should
only be performed when the argument is in canonical form (“call-by-value”). So the reduction of an
application starts as before by reducing the function part to canonical form. But then the argument is
reduced before the S-reduction is performed.

We therefore need to replace the rule of normal order S-reduction (call-by-name)

(Az.e) a = e[z := a]

by the following two rules for applicative order (call-by-value).
The first rule states that you can reduce the argument of an application provided the function part
is in canonical form:
a—a

(Ax.e) a =1 (Az.e) a'

The second rule states that if both the function part and the argument are in canonical form, then you
perform S-reduction:
(Az.€) v =1 e[z := v]

Note that v ranges over canonical forms in this rule.
Alternatively, we can modify the rules for evaluation to canonical form (big step). Here we just need
to replace the rule for normal order evaluation of an application
f=iAze elx:=a]l=;v
fa=ipi4j0

to the one for applicative order evaluation:
f=i)ze a = u ez :=ul=;v
fa=itkriv5 v

Remark. As is clear from the big step semantics of applicative order evaluation, it does not matter
if one chooses to reduce the function f or the argument a first in an application f a. In our small step
semantics above we chose to begin by reducing the function, but in the SECD-machine (described in KP
5.4) which implements applicative order evaluation the argument is computed before the function.

1.9 Lazy natural numbers (optional reading)

As mentioned before, we have assumed that natural numbers in PCF are always evaluated fully. This
means that the reduction of a natural number does not terminate until it has reached one of 0,1,2,.. ..
(One says that such natural numbers are “strict” as opposed to “lazy”.) So if we define

infinity = fix Succ
and compute infinity then this reduces in one step to
Succ (fix Succ)

However, this has not yet terminated and we have to reduce fix Succ, etc. so we never terminate.
However, when we define the type Nat in Haskell by

data Nat = Zero | Succ Nat

we get “lazy” natural numbers. This means that when we evaluate a natural number we will output a
Succ as soon as we have reached an expression Succ e even if e is not itself fully evaluated. For example,
if we compute Succ loop we will output Succ even though its argument loop will never terminate.

So if we compute infinity for lazy natural numbers this will reduce in one step to

Succ (fix Succ)

and we will immediately output a Succ. Then its argument fix Succ will be computed and similarly
output another Succ. The result is that we will compute an infinite sequence

Succ (Succ (Succ (Succ ...)))
To get computation rules for lazy natural numbers we first change the rules for computing pred and
isZero so that they do not fully evaluate their arguments. We get the rules
pred Zero —1 Zero
pred (Succe) —; e
isZero Zero —; True
isZero (Succe) —; False

where e now is an arbitrary expression, not necessarily a fully evaluated natural number.

Furthermore, we remove the rule
e—, €

Succ e —1 Succ e/

which expresses that Succ should evaluate its argument. It should not do so until it has terminated and
output a Succ. This may seem strange, because Succ will indeed evaluate its argument, but the point is
that this will happen only after it has produced its output. The explanation is that we should no longer
understand — as one step of the reduction until it finally terminates, but only one step of the reduction
until it produces its first output.

10

1.10 Typing rules
We are used to reading typing statements of the form
enT
where e is a closed term and 7 is a type expression. Examples are the typing rules for the PCF-
combinators, but also typings for compound expressions such as
isZero (Succ Zero) :: Bool
fix Succ 1 Nat

However, in order to specify the type system for PCF we must also deal with the types of open terms.

For example, what is the type of the expression Succ x? We cannot answer this unless we know the type

of x! If x :: Bool, then Succ x is ill-typed, but if x :: Nat, then Succ x :: Nat. We express the latter correct
conditional typing statement by writing

x :: Nat F Succ x :: Nat

In general we shall write I' - e :: 7, where T' is a type assignment, that is, a list of assignments of
PCF-types to variables. So x :: Nat is a type assignment and x :: Nat,y :: Bool is another. It can also be
the case that the same variable gets typed twice: x :: Nat, x :: Bool is also a valid type assignment.

The typing rule for application is

FrEfuar—1 F'kFa:r
'Ffa:7
which states that if f has a function type 7 — 7' and a has type 7, then f a has the type 7. The I" in

the rules expresses that this is the case for any type assignment.
Then there is the rule for A-abstraction:

Drthext

'XXzec:rm— 1

which says that if e is an expression of type 7 which may contain a free variable z of type 7, then Az.e
has the type 7 — 7'.
Then there is the rule for variables:
|
provided z :: 7 is the last assignment of a type to z in I". To explain why we are only allowed to use the
last assignment consider the following correct derivation:

X :ra,x::bl|l-x::Db
x::al-\x->x::b->b
[-\x >\x ->x::a->b->b

Then compare it with the following erroneous derivation:

X :ra, Xx::bl-x::a
x::tal-\x->x::b->a
|- \x >\x ->x ::a->b ->a

The remaining rules are the typing rules for the PCF-combinators:

I' + True:: Bool

False :: Bool

Zero :: Nat

Succ :: Nat — Nat
if:Bool 7 =27 =T
pred :: Nat — Nat
isZero :: Nat — Bool

L s B s B B B M|
T T T T T T

fixu(r—=7)—>7T

11

Example derivation. Usually type derivations are presented as trees, much like the derivation trees
for computations in P discussed in KP 3.7. For typographic reasons we here instead use indentation to in-
dicate the tree structure: the two (say) premises premisel, premise?2 of a typing statement conclusion
can be found above and one step indented:

premisel

premise2
conclusion

12

Using this notation the derivation of
|- equiv :: Bool -> Bool -> Bool

is as follows

b :: Bool, b’ :: Bool |- if :: Bool -> Bool -> Bool -> Bool
b :: Bool, b’ :: Bool |- b :: Bool
b :: Bool, b’ :: Bool |- if b :: Bool -> Bool -> Bool
b :: Bool, b’ :: Bool |- if :: Bool -> Bool -> Bool -> Bool
b :: Bool, b’ :: Bool |- b’ :: Bool
b :: Bool, b’ :: Bool |- if b’ :: Bool -> Bool -> Bool
b :: Bool, b’ :: Bool |- True :: Bool
b :: Bool, b’ :: Bool |- if b’ True :: Bool -> Bool
b :: Bool, b’ :: Bool |- False :: Bool
b :: Bool, b’ :: Bool |- if b’ True False :: Bool
b :: Bool, b’ :: Bool |- if b (if b’ True False) :: Bool -> Bool
b :: Bool, b’ :: Bool |- if :: Bool -> Bool -> Bool -> Bool
b :: Bool, b’ :: Bool |- b’ :: Bool
b :: Bool, b’ :: Bool |- if b’ :: Bool -> Bool -> Bool
b :: Bool, b’ :: Bool |- False :: Bool
b :: Bool, b’ :: Bool |- if b’ False :: Bool -> Bool
b :: Bool, b’ :: Bool |- True :: Bool
b :: Bool, b’ :: Bool |- if b’ False True :: Bool
b :: Bool, b’ :: Bool |- if b (if b’ True False) (if b’ False True)) :: Bool
b :: Bool |- \b’ -> if b (if b’ True False) (if b’ False True)) :: Bool -> Bool
|- (\b b> -> if b (if b’ True False) (if b’ False True)) :: Bool -> Bool -> Bool

In the derivation of the type for equiv we have written out every step according to the typing rules. This
makes it quite long and tedious. A way to make it shorter is to introduce derived rules such as

T'Fb::Bool 'kd:7

T'Fifbde: T

'ke:xr

It is clear that this rule can be derived by using the type of if and the rule for typing an application
three times. Using the derived rule the derivation of equiv becomes shorter and more readable:

b :: Bool, b’ :: Bool |- b :: Bool
b :: Bool, b’ :: Bool |- b’ :: Bool
b :: Bool, b’ :: Bool |- True :: Bool
b :: Bool, b’ :: Bool |- False :: Bool
b :: Bool, b’ :: Bool |- if b’ True False :: Bool
b :: Bool, b’ :: Bool |- b’ :: Bool
b :: Bool, b’ :: Bool |- False :: Bool
b :: Bool, b’ :: Bool |- True :: Bool
b :: Bool, b’ :: Bool |- if b’ False True :: Bool
b :: Bool, b’ :: Bool |- if b (if b’ True False) (if b’ False True)) :: Bool
b :: Bool |- \b’ -> if b (if b’ True False) (if b’ False True)) :: Bool -> Bool
|- (\b b> -> if b (if b’ True False) (if b’ False True)) :: Bool -> Bool -> Bool

For the same reason it is useful to introduce derived rules for the other PCF-combinators. Do this as

an exercise!

13

2 Computability

We shall now discuss some problems which cannot be computed by any PCF-program. To this end it
will be useful to consider all PCF-programs, not only the ones which have a type.

For the sake of readibility we will write our PCF-programs in Haskell-style, and rely on the reader to
apply the technique of Section 1.4 to transform them into the proper form.

For example, we shall write

id x=x
loop = loop
liar x = if (halts (x x)) loop True

as more readable versions of the proper PCF-programs

id =\x > x
loop = fix id
liar = \x -> if (halts (x x)) loop True

2.1 Some incomputable problems about PCF-programs
We begin by proving the following simple version of the halting problem:

Theorem 1 There is no PCF-program halts, such that

T ; .
haltse = rue, iff e ha.s canonical form
False, otherwise

Proof: Assume that there is such a PCF-program halts. Then we can define the PCF-program
liar x = if (halts (x x)) loop True

Now, True is canonical but loop does not have canonical form. So apply liar to itself to get a contra-
diction: liar liar has a canonical form iff 1iar 1iar does not have a canonical form!
O

Some variations which are proved in essentially the same way:
Theorem 2 There is no PCF-program isBool, such that

True, iff e = True or e = False

isBool .
isBoole = {False, otherwise

Theorem 3 There is no PCF-program isTrue, such that

True, iff e = True

isT e = .
isirue { False, otherwise

Theorem 4 There is no PCF-program isNat, such that

True, iff e = n for some canonical natural number n

isNat .
tsflate = {False, otherwise

A PCF-program f computes a constant function on natural numbers iff there is an n :: Nat such that
f m = n for all m :: Nat, that is, if it outputs the same n irrespectively of the input m. It would be
wasteful to compute the argument of f, since the result doesn’t depend on it. This kind of knowledge is
useful for optimizing implementations of functional programs.

Theorem 5 There is no PCF-program isConstFun such that

True, iff e is a constant function on natural numbers

isC tFune = .
tslonstiun {False, otherwise

14

Proof. We assume that there is such a PCF-program isConstFun and show that this entails that there
is a PCF-program isNat which contradicts theorem 4.
First, consider the PCF-program strictZero

strictZero x = if (isZero x) O (strictZero (pred x))

This program has the property that strictZeroe = 0 iff e = n for some canonical natural number n.
But now we can define isNat:

isNat x = isConstFun (Ay.strictZero x)

Assume first that e = n for some canonical natural number n. Then strictZero e = 0 and thus
Ay.strictZero e is a constant function on natural numbers. Hence, isNat e = True.

Assume then that there is no canonical natural number n such that e = n. Then strictZero e
does not reduce to a canonical natural number and thus Ay.strictZero e is not a constant function on
natural numbers. Hence, isNat e = False.

O

Two PCF-programs f and f' compute the same function on natural numbers iff for all m,n :: Nat it
is the case that f m = n iff f' m = n, that is, f and f' give the same output n (if any) for an arbitrary
input m.

The following theorem states that it is futile to write a test for deciding whether two PCF-programs
compute the same function. This is the reason why function types are not instances of the equality class
Eq in Haskell.

Theorem 6 There is no PCF-program eqFun such that

eqFun f ' = { True, if f and f' compute the same function on natural numbers

False, otherwise
Proof. The proof is similar to the previous. If we can test whether two function are equal then we can
test whether a function f is equal to the function which always returns 0, that is, we can test whether
f m = 0 for all canonical natural numbers m. So if we assume that eqFun exists, then we can write a
program for isNat! (How?)
0.

2.2 Encoding PCF-programs as natural numbers

Above we could show that some problems about PCF-programs do not have computable solutions. It
was possible to do so in a simple way by using the fact that we can apply a PCF-program e to itself to
get a new PCF-program e e.

Traditional computability theory usually uses Turing machines or recursive functions for defining
a notion of computable function on natural numbers. In KP the small imperative language P is used
for the same purpose. In neither of these models of computation self-application is possible. Instead
one first encodes for example Turing machines as natural numbers. Then one can give the code of a
Turing machine as input to the Turing machine itself. The development is analogous if one uses recursive
functions or P-programs.

We shall now show how to encode PCF-programs as natural numbers, and then reformulate theorem
1-6 as statements about such codes.

To this end we introduce CPCF, a combinatory version of PCF. Since CPCF-programs have no
variables they will be easier to encode as natural numbers than PCF-programs.

The CPCF-terms are generated by the following context-free grammar:

<cterm> ::= (<cterm> <cterm>) | k | s |
True | False | Zero | Succ |
if | pred | isZero | fix

and again we may omit parentheses in the usual way. CPCF is also a Haskell-subset, since we can define
the combinators k and s by

15

kxy =x
sxyz=xz (y =z

One can translate back and forth between PCF and CPCF. A CPCF-program can easily be translated
into a PCF-program by using the definitions of k and s as A-expressions. A PCF-program on the other
hand can be translated into a CPCF-program by using the algorithm given in exercise 5.13 in KP (lab
4). So CPCF-programs should be viewed as “machine codes” for PCF-programs and are there only for
coding purposes.

We shall now show how to encode a PCF-program as a natural number. This natural number can be
represented as an element of the type Nat in PCF in the usual way. (Therefore we can talk about a “self-
encoding” of PCF inside itself.) To do this we first translate the PCF-program into the corresponding
CPCF-program. To this CPCF-program e we associate a natural number e# in PCF as follows:

k* = 0
st = 1
True” = 2
False® = 3
Zero®” = 4
Succ#* = 5
if* = 6
pred” = 7
isZero# = 8
fix# = 9
(f) = 10+ (paircode f# a*)

where

paircode :: Nat -> Nat -> Nat

paircodemn = (m + n + 1)(m + n)/2 + m

is a PCF-program, where we have used infix + for PCF-addition.

Note that there is a bijective correspondence between CPCF-programs e and elements e# of Nat.
Note also that the function which maps a program e to its code e# is not itself a PCF-program. (In
fact, it can be shown that there is no PCF-program encode such that encode e = e# for all e. So —# is
another example of an uncomputable function.)

2.3 The self interpreter

A self interpreter for PCF is a PCF-program eval which inputs a natural number and returns the value
of the PCF-program it encodes, that is,

eval e = viffe = o
for an abitrary PCF-program e. In particular assume that f :: Nat — Nat, then we also have
eval ffm=>niff fm= n
for all m,n :: Nat. Similarly, for a binary function f :: Nat — Nat — Nat, we have
eval ffmm/ = niff fmm' = n

for all m,m/,n :: Nat. Etc.

The self interpreter is a PCF-program which computes the inverse of the encoding function. Given a
natural number n it returns the CPCF-program n encodes. If n = 0 we return k, if n = 1 we return s,
etc. If n > 10 then we encode an application. Thus n — 10 is a code for a pair of natural numbers p, q
where p encodes the function part of the application and g encodes the argument part. We thus need
two auxiliary functions

16

funpart :: Nat -> Nat
argpart :: Nat -> Nat

such that
n = 10 + (paircode (funpart n) (argpart n))
Here is a PCF-program for eval:

eval n = if (n == 0) k
(if (n==1) s
(if (n == 2) True
(if (n == 3) False
(if (n == 4) Zero
(if (n == 5) Succ
(if (n == 6) if
(if (n == 7) pred
(if (n == 8) isZero
(if (n == 9) fix

(eval (funpart n)) (eval (argpart n)))))))))))

We have used Haskell’s infix equality sign (==) for equality of natural numbers in PCF.

Remark. A self interpreter for Turing machines is usually called a universal Turing machine. This is
a Turing machine eval which given a code t# for an arbitrary Turing machine ¢ and a natural number
m as input on its tape, computes the same natural number n (if any) as ¢ does with input m. Note the
similarity between a universal Turing machine and a computer with a stored program.

2.4 Some incomputable problems about codes for PCF-programs

In the first version of the halting problem we showed that it was impossible to find a PCF-program which

takes an arbitrary PCF-program as input and decides whether it has a canonical form. This formulation

is not so satisfactory because such a program must be defined on an arbitrary input, so cannot be typable.
In the second formulation we instead show that there can be no PCF-program

haltsc :: Nat -> Bool

which takes a PCF-program coded as a natural number and decides whether the PCF-program has a
canonical form.

Theorem 7 There is no PCF-program haltsc, such that

haltsc e® = True, iff e havs canonical form
False, otherwise
Proof: The proof is much like the proof of Theorem 1: we assume that there is such a PCF-program
haltsc, and derive a contradiction. However, we need a modified version liarc of liar which is applied
to a code of itself rather than to itself.
A first try would be
)

liarcn = if (haltsc(evalnn)”) loop True

but (evalnn)® is unfortunately not a PCF-program (as remarked above the function e# which computes
a code for an arbitrary PCF-program e is not computable).

However, it is sufficient to compute (evalnn)# when n is a natural number in PCF, and this can
easily be done by following the definition of the encoding function in Section 2.2. Call this program
selfevalc:

17

selfevalc n = applyc (applyc evalc (matc n)) (natc n)

applyc m n 10 + (paircode m n)

natc Zero =4
natc (Succ n) = applyc 5 (natc n)

where evalc = eval®. It follows immediately that

selfevalcn = (eval nn)”
for all natural numbers n in PCF.
Now we are ready for the correct definition of liarc

liarc n = if (haltsc (selfevalc n)) loop True

To derive the contadiction we reason as in the first version of the halting problem, except that we instead
apply liarc to a code for 1iarc. Recall that eval e# e# has canonical form iff e e# does. Therefore we
conclude that liarc liarc# has a canonical form iff selfevalc liarc# does not have a canonical form
iff liarc liarc# does not have a canonical form. We have a contradiction, so we must conclude that
there is no PCF-program haltsc with the above specification.
O

Again, there are some variations which are proved in essentially the same way:

Theorem 8 There is no PCF-program isBoolc, such that

isBoolc e¥ = True, iff e =>'True or e = False
False, otherwise
Theorem 9 There is no PCF-program isTruec, such that

isTruece® = True, iff e =>.True
False, otherwise
Theorem 10 There is no PCF-program isNatc, such that

. # True, iff e = n for some canonical natural number n
isNatce = .

False, otherwise
Moreover, we have analogous versions of theorem 5 and 6:

Theorem 11 There is no PCF-program isConstFunc such that

True, iff e is a constant function on natural numbers

isConstFunc e® = .
ishonstiunc {False, otherwise

Theorem 12 There is no PCF-program eqFunc such that

eqFunc f* f'# N True, if f and f' compute the same function on natural numbers
False, otherwise
The proofs of these two theorems use the same ideas as the proofs of theorem 5 and 6. However, this
idea needs to be adapted to codes for PCF-programs. The key step is that we need to show how to code
programs with a free variable. We omit the details of these proofs.

18

2.5 PCF-computable functions

We shall now define when a partial function g : N = N is PCF-computable. By “function” we here
mean “mathematical function”, that is, a function in the set-theoretic sense. (Partial functions are de-
fined in Definition 2.1 in KP and total functions on the following page.) Moreover, N = {0,1,2,...} is
the set of natural numbers. We shall distinguish between such natural numbers and their representa-
tives in PCF, that is, the canonical elements of the type Nat, that is, 0 = Zero,1 = Succ Zero,2 =
Succ (Succ Zero),.... If n € N then we write 7@ :: Nat for its represenation in PCF.

With this notation we say that a PCF-program f computes the partial function g : N = N provided

fm=mniff glm)=n

for all m,n € N. Moreover, we say that g is PCF-computable provided there is some PCF-program f
which computes it.

Similarly, if Bool = {true, false} are the truth-values, so that frue = True and false = False, then
the PCF-program f computes the partial function g : N = Bool provided

fm=0biff gm) =b

for all m € N and b € Bool. Moreover, we say that g is PCF-computable provided there is some
PCF-program f which computes it.

Before, we introduced the notation e# for the code of the program e. But, since we pedantically
distinguish between members of the set N and their reprsentations as members of the type Nat, we must
distinguish between e# :: Nat and the corresponding element e € N.

For example, using the notion of computable problem theorem 10 can be reformulated in the following
way:

Theorem 13 The function isNatc

true, iff e = n for some canonical natural number n

) B
zsNatC(e) - {false, otherwise

s not computable.

Proof. If isNatcis computable, then there is a PCF-program isNatc as in theorem 10. But we showed
that this led to a contradiction.
O

Theorem 14 The partial function pNatc

pNatc(eh) { true, iff e = n for some canonical natural number n

undefined, otherwise

s computable.

Proof. It is computed by the PCF-program
pNatc n = pNat (eval n)

pNat e = if (isZero e) True (pNat (pred e))

O

A total function g : N — Bool is also called a decision problem. If g is computable then the problem
is said to be decidable. So the problem of deciding whether a PCF-term reduces to a canonical natural
number is an example of an incomputable problem. However, one says that this problem is semi-decidable,
since the partial function pNatc is computable. The only difference between pNatc and isNatc is that
pNatc is undefined whenever the argument does not reduce to a canonical canonical natural number,
whereas isNalc is required to return false in that case.

The notions of A-definable function (KP Definition 5.11-5.12), Turing-machine computable function
(KP Definition 6.5), recursive function (KP Definition 6.7), P-computable function (KP Definition 3.15),
etc. have definitions which are analogous to our definition of PCF-computable function.

We have the following theorem:

19

Theorem 15 A partial function on natural numbers is PCF-computable iff it is A-definable iff it is
Turing-machine computable iff it is recursive iff it is P-computable.

To prove this we need to show how to translate between programs (machines) in the different models
in a meaning preserving way. This means for example that if the PCF-program f computes the partial
function g and is translated into the Turing machine ¢, then ¢ should also compute g. (This requirement
on the translation is the general criterion for compiler correctness: the compiled target program should
compute the same function as the source program.)

Church’s thesis. Theorem 15 can be extended to many other models of computation. The belief
that there is no good model of computation which gives rise to more computable functions than the
A-definable (etc) ones is called “Church’s thesis” or “Church-Turing’s thesis”. This is not a theorem and
can never become one, since there is no precise way to define what a “good” model of computation is.
Nevertheless, Church’s thesis is a meaningful statement. It is generally believed to be true, since noone
has been able to refute it during the 60 years which have elapsed since it was first formulated.

2.6 Encoding PCF-programs as binary trees

If we add binary trees to PCF as in 1.5, then it becomes very easy to write a self-interpreter.

So let PCF+ be PCF extended with the type of binary trees and the constants Leaf, Branch,
isLeaf, left, right. Similarly, we let CPCF+ be the combinatory version of PCF+.

The CPCF+-terms are generated by the following context-free grammar:

::= (<cterm> <cterm>) | k | s |
True | False | Zero | Succ | Leaf | Branch |
if | pred | isZero | isLeaf | left | right | peel |
fix

<cterm>

We shall now show how to encode a CPCF+-program as a binary tree in CPCF+:

k#* = Leaf0
s* = Leafl
True# = Leaf 2
False” = Leaf3
Zero®” = Leaf4
Succ# = Leaf)
Leaf” = Leaf6
Branch?” = Leaf 7
if* = Leaf8
pred” = Leaf9
isZero® = Leaf 10
isLeaf® = Leaf 11
left”* = Leaf 12
right¥ = Leaf 13
peel” = Leaf 14
fix* = Leaf 15
(f a)* = Branch f# o

2.7 A self interpreter for (C)PCF+

We write the CPCF+ interpreter as a Haskell program and leave it to the reader to transform it to a

CPCF+ program

20

eval (Leaf 0) =k

eval (Leaf 1) = s

eval (Leaf 2) = True
eval (Leaf 3) = False
eval (Leaf 4) = Zero
eval (Leaf 5) = Succ
eval (Leaf 6) = Leaf
eval (Leaf 7) = Branch
eval (Leaf 8) = if
eval (Leaf 9) = pred
eval (Leaf 10) = isZero
eval (Leaf 11) = isLeaf
eval (Leaf 12) = left
eval (Leaf 13) = right
eval (Leaf 14) = peel
eval (Leaf 15) = fix
eval (Branch as bs) = (eval as) (eval bs)

Remark. PCF+ is quite closely related to the language LISP. This is an untyped functional languages
where all data is coded as binary trees, called S-expressions. There is an empty tree called NIL and our
Branch is called CONS. Moreover, our left is called CAR and our right is called CDR. LISP also has a
built in coding operation called QUOTE and a self-interpreter EVAL.

21

