
J. Functional Programming 1 (1): 1{000, January 1993 c 1993 Cambridge University Press 1FUNCTIONAL PEARLSA Poor Man's Concurrency MonadKoen ClaessenChalmers University of Technologyemail: koen@cs.chalmers.seAbstractWithout adding any primitives to the language, we de�ne a concurrency monad trans-former in Haskell. This allows us to add a limited form of concurrency to any existingmonad. The atomic actions of the new monad are lifted actions of the underlying monad.Some extra operations, such as fork , to initiate new processes, are provided. We discussthe implementation, and use some examples to illustrate the usefulness of this construc-tion. 1 IntroductionThe concept of a monad (Wadler, 1995) is nowadays heavily used in modern func-tional programming languages. Monads are used to model some form of computa-tion, such as non-determinism or a stateful calculation. Not only does this solvemany of the traditional problems in functional programming, such as I/O and mu-table state, but it also o�ers a general framework that abstracts over many kindsof computation.It is known how to use monads to model concurrency. To do this, one usuallyconstructs an imperative monad, with operations that resemble the Unix fork(Jones & Hudak, 1993). For reasons of e�ciency and control, Concurrent Haskell(Peyton Jones et al., 1996) even provides primitive operations, which are de�nedoutside the language.This paper presents a way to model concurrency, generalising over arbitrary mon-ads. The idea is to have atomic actions in some monad that can be lifted into aconcurrent setting. We explore this idea within the language; we will not add anyprimitives. 2 MonadsTo express the properties of monads in Haskell, we will use the following type classde�nition. The bind operator of the monad is denoted by (?), and the unit operatorby return .

2 Koen Claessenclass Monad m where(?) :: m �! (� ! m �) ! m �return :: � ! m �Furthermore, throughout this paper we will use the so-called do-notation as syntac-tic sugar for monadic expressions. The following example illustrates a traditionalmonadic expression on the left, and the same, written in do-notation, on the right.expr 1 ? �x: do x expr 1expr 2 ? � : ; expr 2expr 3 ? �y: ; y expr 3return expr 4 ; return expr 4As an example, we present a monad with output, called the writer monad. Thismonad has an extra operator called write . It takes a string as argument, whichbecomes output in a side e�ect of the monad. The bind operator (?) of the monadhas to take care of combining the output of two computations.A monad having this operator is an instance of the following class.class Monad m) Writer m wherewrite :: String ! m ()A typical implementation of such a monad is a pair containing the result of thecomputation, together with the output produced during that computation.type W � = (�; String)instance Monad W where(a; s) ? k = let (b; s0) = k a in (b; s++s0)return x = (x; \")instance Writer W wherewrite s = ((); s)Note how the bind operator concatenates the output of the two subactions.Most monads come equipped with a run function. This function executes a com-putation, taking the values inside one level downwards. The monad W has such arun function, we call it output , which returns the output of a computation in W .output :: W � ! Stringoutput (a; s) = s

Functional pearls 32.1 Monad TransformersSometimes, a monad is parametrised over another monad. This is mostly done toadd more functionality to an existing monad. In this case we speak of a monadtransformer (Liang et al., 1995). An example is the exception monad transformer;it adds a way to escape a monadic computation with an error message. In general,operations that work on one speci�c monad can be lifted into the new, extendedmonad.Again, we can express this by using a type class.class MonadTrans � wherelift :: Monad m) m � ! (� m) �A type constructor � forms a monad transformer if there is an operation lift thattransforms any action in a monad m into an action in a monad � m.In this paper we will discuss a monad transformer called C . It has the interestingproperty that any monadic action that is lifted into the new monad will be con-sidered an atomic action in a concurrent setting. Also some extra operations areprovided for this monad, for example fork , which deals with process initiation.3 ConcurrencyHow are we going to model concurrency? Since we are not allowed to add primi-tives to the language, we are going to simulate concurrent processes by interleavingthem. Interleaving implements concurrency by running the �rst part of one process,suspending it, and then allowing another process to run.3.1 ContinuationsTo suspend a process, we need to grab its future and stick it away for later use.Continuations are an excellent way of doing this. We can change a function intocontinuation passing style by adding an extra parameter, the continuation. Insteadof producing the result directly, the function will now apply the continuation tothe result. We can view the continuation as the future of the computation, as itspeci�es what to do with the result of the function.Given a computation type Action , a function that uses a continuation with resulttype � has the following type.type C � = (� ! Action) ! ActionThe type Action contains the actual computation. Since, in our case, we wantto parametrise this over an arbitrary monad, we want Action (and also C) to bedependent on a monad m.type C m � = (�! Action m) ! Action m

4 Koen ClaessenC is the concurrency monad transformer we use in this paper. That means thatC m is a monad, for every monad m.instance Monad m) Monad (C m) wheref ? k = �c: f (�a: k a c)return x = �c: c xSequencing of continuations is done by creating a new continuation for the leftcomputation that contains the right computation. The unit operator just passes itsargument to the continuation. 3.2 ActionsThe type Action m speci�es the actual actions we can do in the new monad.Whatdoes this type look like? For reasons of simplicity, exibility, and expressiveness(Scholz, 1995), we implement it as a datatype that describes the di�erent actionswe provide in the monad.First of all, we need atoms,which are computations in the monadm. We are insidea continuation, so we want these atomic computations to return a new action. Also,we need a constructor for creating new processes. Lastly, we provide a constructorthat does not have a continuation; we will use it to end a process. We also call thisthe empty process. data Action m= Atom (m (Action m))j Fork (Action m) (Action m)j StopTo express the connection between an expression of type C m � and an expressionof type Action m, we de�ne a function action that transforms one into the other.It �nishes the computation by giving it the Stop continuation.action :: Monad m) C m � ! Action maction m = m (�a: Stop)To make the constructors of the datatype Action easily accessible, we can de�nefunctions that correspond to them. They will create an action in the monad C m.The �rst function is the function atom , which turns an arbitrary computation inthe monad m into an atomic action in C m. It runs the atomic computation andmonadically returns a new action, using the continuation.yatom :: Monad m) m � ! C m �atom m = �c: Atom (do a m ; return (c a))y This is actually the monadic map, but because Functor is not a superclass of Monad inHaskell we cannot use map .

Functional pearls 5In addition, we have a function that uses the Stop constructor, called stop . Itdiscards any continuation, thus ending a computation.stop :: Monad m) C m �stop = �c: StopTo access Fork , we de�ne two operations. The �rst, called par , combines twocomputations into one by forking them both, and passing the continuation to bothparts. The second, fork , resembles the more traditional imperative fork. It forksits argument after turning it into an action, and continues by passing () to thecontinuation.par :: Monad m) C m �! C m �! C m �par m1 m2 = �c: Fork (m1 c) (m2 c)fork :: Monad m) C m �! C m ()fork m = �c: Fork (action m) (c ())The type constructor C is indeed a monad transformer. Its lifting function is thefunction atom ; every lifted action becomes an atomic action in the concurrentsetting. instance MonadTrans C wherelift = atomWe have now de�ned ways to construct actions of type C m �, but we still can notdo anything with them. How do we model concurrently running actions? How dowe interpret them? 3.3 SemanticsAt any moment, the status of the computation is going to be modelled by a listof (concurrently running) actions. We will use a scheduling technique called round-robin to interleave the processes. The concept is easy: if there is an empty list ofprocesses, we are done. Otherwise, we take a process, run its �rst part, take thecontinuation, and put that at the back of the list. We keep doing this recursivelyuntil the list is empty.We implement this idea in the function round .round :: Monad m) [Action m] ! m ()round [] = return ()round (a : as) = case a ofAtom am ! do a0 am ; round (as ++ [a0])Fork a1 a2 ! round (as ++ [a1; a2])Stop ! round as

6 Koen ClaessenAn Atom monadically executes its argument, and puts the resulting process at theback of the process list. Fork creates two new processes, and Stop discards itsprocess.As for any monad, we need a run function for C m as well. It just transforms itsargument into an action, creates a singleton process list, and applies the round-robinfunction to it. run :: Monad m) C m � ! m ()run m = round [action m]As we can see, the type � disappears in the result type. This means that we losethe result of the original computation. This seems very odd, but often (and in thecases of the examples in this paper) we are only interested in the side e�ects of acomputation. It is possible to generalise the type of run , but that goes beyond thescope of this paper. 4 ExamplesWe will present two examples of monads that can be lifted into the new concurrentworld. 4.1 Concurrent OutputRecall the writer monad example from Sect. 2. We can try lifting this monad intothe concurrent world. To do this, we want to say that every instance of a writermonad can be lifted into a concurrent writer monad.zinstance Writer m) Writer (C m) wherewrite s = lift (write s)The function lift here is the atom of the monad transformer C . Every writeaction, after lifting, becomes an atomic action. This means that no computationwill produce output while another write is writing.Before we present an example, we �rst de�ne an auxilary function loop . Thisfunction works in any writer monad. It takes one argument, a string, and writes itrepeatedly to the output.loop :: Writer m) String ! m ()loop s = do write s ; loop sWe use this function to de�ne a computation in C m � that creates two processesthat are constantly writing. One process writes the string \fish", the other writes\cat".z Actually, we want to say this for all monad transformers at once, but Haskell does notcurrently allow us to express this.

Functional pearls 7example :: Writer m) C m ()example = do write \start!"; fork (loop \fish"); loop \cat"The result of the expression output (run example) looks like the following string.\start!fishcatfishcatfishcatfishcatfishcatfishca ..."Because we de�ned write as an atomic action, the writing of one \fish" and one\cat" cannot interfere. If we want �ner grained behaviour, we can split one writeaction into several write actions, e.g. the separate characters of a string. A simpleway of doing this is to change the lifting of write .instance Writer m) Writer (C m) wherewrite [] = return ()write (c : s) = do lift (write [c]) ; write sThe lifting is now done character-by-character. The result of the expression output(run example) now looks like this.\start!fciasthcfaitschafticsahtfciasthcfaitscha ..."4.2 Merging of In�nite ListsA well known problem, called the merging of in�nite lists, is as follows. Supposewe have an in�nite list of in�nite lists, and want to collapse this list into one bigin�nite list. The property we want to hold is that every element in any of the originallists is reachable within a �nite number of steps in the new list. This technique isfor example used to prove that the set Q of rationals has a countable number ofelements.Using the writer monad with the new lifting, we can solve this problem for anin�nite list of in�nite strings. The idea is that, for each string, we create a processthat writes the string. If we fork this in�nite number of processes, and run theresulting computation, the output will be the desired in�nite string.We will take a step back in order to present a piece of useful theory. There aremonads that have a so-called monoidal structure on them. That means that thereis an operator, denoted by (++), that combines two computations of the same typeinto one, and that there is an identity element for this operation, called zero . InHaskell, we can say: class Monad m) Monoidal m where(++) :: m �! m � ! m �zero :: m �

8 Koen ClaessenThe function concat , with type Monoidal m) [m �]! �, uses (++) and zeroto concatenate a (possibly in�nite) list of such computations together.The reason we are looking at this is that C m admits a monoidal structure; theparallel composition par represents the (++), and the process stop represents itsidentity element zero .instance Monad m) Monoidal (C m) where(++) = parzero = stopThis means we can use concat to transform an in�nite list of processes into aprocess that concurrently runs these computations. To merge an in�nite list ofin�nite strings, we transform every string into a writing process, fork them withconcat , and extract the output.merge :: [String] ! Stringmerge = output b run b concat b map writeOf course, this function also works for �nite lists, and can be adapted to act onmore general lists than strings.4.3 Concurrent StateIn Haskell, the so-called IO monad provides mutable state. Within the monad wecan create, access, and update pieces of storage. The type of a storage that containsan object of type � is Var �. The functions we use to control these Var s, the non-proper morphisms of IO , have the following types.newVar :: IO (Var �)readVar :: Var � ! IO �writeVar :: Var � ! �! IO ()In the lifted version of this monad, the C IO monad, we can have several concurrentprocesses sharing pieces of state. In a concurrent world however, we often wantmore structure on shared state. Concurrent Haskell (Peyton Jones et al., 1996), anextension of Haskell with primitives for creating concurrent processes, recognisedthis. It introduces a new form of shared state: the MVar .Like a Var , an MVar can contain a value, but it may also be empty. An MVarbecomes empty after a process has done a read operation on it. Processes readingan empty MVar will block, until a new value is put into the MVar . MVars are apowerful mechanism for creating higher level concurrent data abstractions. Theycan for example be used for synchronization and data sharing at the same time.It is possible to integrate MVars with our concurrency monad transformer, usingthe mutable state primitives we already have. First, we have to think of how torepresent an MVar . An MVar can be in two di�erent states; it can either be full(containing some value), or empty.

Functional pearls 9type MVar � = Var (Maybe �)data Maybe � = Just � j NothingWe use the datatype Maybe to indicate that there is Just a value in an MVar , orNothing at all.Let us now de�ne the operations that work on MVars. The function that createsan MVar lifts the creation of a Var , and puts Nothing in it.newMVar :: C IO (MVar �)newMVar = lift (do v newVar; writeVar v Nothing; return v)We can use the same trick when writing to an MVar .xwriteMVar :: MVar � ! �! C IO ()writeMVar v a = lift (writeVar v (Just a))The hardest function to de�ne is readMVar , since it has to deal with blocking. Toavoid interference when reading an MVar , we perform an atomic action that pullsthe value out of the Var and puts Nothing back. We introduce an auxilary functiontakeVar , working on the unlifted IO monad, that does this.takeVar :: MVar �! IO (Maybe �)takeVar v = do am readVar v; writeVar v Nothing; return amOnce we have this function, the de�nition of a blocking readMVar is not hardanymore. We represent blocking by repeatedly trying to read the variable. Werealise that this busy-wait implementation is very ine�cient, and we indeed haveused other methods as well (such as the one used in (Jones, M. et al., 1997)), butwe present the easiest implementation here.readMVar :: MVar � ! C IO �readMVar v = do am lift (takeVar v); case am ofNothing ! readMVar vJust a ! return aNote that readMVar itself is not an atomic action, so other processes can also readthe MVar just after takeVar . Fortunately, at that point, the MVar is already blockedby the function takeVar . It is impossible for readMVar to be atomic, since otherprocesses deserve a chance when it is blocking on an MVar .x We are a bit sloppy here; the real semantics of MVars is slightly di�erent (Peyton Joneset al., 1996).

10 Koen ClaessenFor some examples of the use of MVars, we refer the reader to the paper aboutConcurrent Haskell (Peyton Jones et al., 1996), where MVars are introduced.5 DiscussionThe work presented in this paper is an excellent example of the exiblity of monadsand monad transformers. The power of dealing with di�erent types of computationsin this way is very general, and should de�nitely be more widely used and supportedby programming languages. We really had to push the Haskell type class mechanismto its limits in order to make this work. A slightly extended class mechanism wouldhave been helpful (Peyton Jones et al., 1997).To show that this idea is more than just a toy, we have used this same settingto add concurrency to the graphical system TkGofer (Vullinghs et al., 1996). Thesystem increased in expressive power, and its implementation in simplicity. It turnsout to be a very useful extension to TkGofer.We have also experimented with lifting other well-known monads into this con-current setting. Lifted lists, for example, can be used to express the in�nite mergingproblem more concisely. However, a problem with the type system forced us to foolit in order to make this work. Exception and environment monads (Wadler, 1995)do have the expected behaviour, though we are not able to lift all of the non-propermorphisms of these monads. This is because some of them need a computation asan argument, so that lifting becomes non-trivial.However, there are a few drawbacks. We have not implemented real concurrency.We simply allow interleaving of atomic actions, whose atomicity plays a vital rolein the system. If one atomic action itself does not terminate, the concurrent com-putation of which it is a part of does not terminate either. We cannot changethis, because we cannot step outside the language to interrupt the evaluation of anexpression.The source code of the functions and classes mentioned in this paper is publi-cally available at http://www.cs.chalmers.se/�koen/Code/pearl.hs. It also containsanother, more e�cient but slightly bigger implementation of MVars.AcknowledgementsI would like to thank Richard Bird, Byron Cook, Andrew Moran, Thomas Nordin,Andrei Sabelfeld, Mark Shields, Ton Vullinghs, and Arjan van Yzendoorn for theiruseful comments on earlier drafts of this paper. Most of the work for this paperwas done while visiting the Oregon Graduate Institute, and an earlier version wasused as part of my Master's thesis at the University of Utrecht, under supervisionof Erik Meijer. ReferencesJones, M., & Hudak, P. (1993). Implicit and Explicit Parallel Programming in Haskell.Yale University. Tech. Rep. YALEU/DCS/RR-982.

Functional pearls 11Jones, M. et al. (1997). The Hugs System. Nottingham University and Yale University.Url: http://www.haskell.org.Liang, Sh., Hudak, P., & Jones, M. (1995). Monad Transformers and Modular Interpreters.Conference Record of 22nd POPL '95. ACM.Peyton Jones, S., Gordon, A., & Finne, S. (1996). Concurrent Haskell. Proceedings of the23rd POPL '96. ACM.Peyton Jones, S., Jones, M., & Meijer, E. (1997). Type Classes: An Exploration of theDesign Space. Proceedings of the Haskell Workshop of the ICPF '97. ACM.Scholz, E. (1995). A Concurrency Monad Based on Constructor Primitives. Universit�atBerlin.Vullinghs, T., Schulte, W., & Schwinn, T. 1996 (June). An Introduction to Tk-Gofer. Tech. rept. 96-03. University of Ulm. Url: http://www.informatik.uni-ulm.de/ pm/ ftp/ tkgofer.html.Wadler, Ph. (1995). Monads for Functional Programming. Advanced Functional Program-ming. Lecture Notes in Computer Science. Springer Verlag.

