
CHALMERS TEKNISKA HÖGSKOLA 8:30–12:30, Saturday, May 30, 2015.
Dept. of Computer Science and Engineering Parallel Functional Programming

DAT280, DIT261

Exam in Parallel Functional Programming

8:30–12:30, Saturday, May 30, 2015.
Lecturers:
John Hughes, tel 031 681454
Mary Sheeran, tel 031 681454

Permitted aids:
Up to two pages (on one A4 sheet of paper) of pre-written notes. These notes
may be typed or hand-written. This summary sheet must be handed in with
the exam.
There are 8 questions and 61 points in total.
24 points are required to pass (grade 3), 36 points are required for grade 4, and
48 points for grade 5.

1

1. Parallel Functional Programming 8 points

(a) Why are functional languages particularly well-suited to parallel pro-
gramming? 1 points

(b) What is the main advantage of the Strategies approach to parallel
programming in Haskell? 1 points

(c) “After parallelization, any program should be able to run N times
faster on N cores.” Is this true or false? Explain your answer briefly
(for example, with reference to Amdahl’s Law)c. 1 points

(d) In the Repa approach to parallel programming in Haskell, how does
the programmer specify the desired parallelism in his program? 1 points

(e) Often in writing parallel functional programs one needs to control
the size of tasks that are to be run in parallel. Explain one approach
to doing this. 1 points

(f) Haskell and Erlang both use garbage collection to recycle memory,
but they work rather differently. What aspect of garbage collection
may cause a problem in real-time systems, and how does Erlang’s
VM design mitigate that problem? 1 points

(g) What is the effect of linking two Erlang processes? 1 points

(h) What is the purpose of a supervisor? 1 points

2

2. Parallel Sorting 8 points

(a) Read this Haskell definition of quicksort:

qsort [] = []

qsort (x:xs) =

qsort [y | y <- xs, y<x]

++ [x]

++ qsort [y | y <- xs, y>=x]

Using par and pseq, write a parallel version of qsort. Ensure that
the task granularity is not so fine that the overheads of parallelism
dominate the run time. 4 points

(b) Read this Erlang definition of quicksort (which is simply a translation
of the Haskell version):

qsort([]) -> [];

qsort([X|Xs]) -> qsort([Y || Y <- Xs, Y<X])

++ [X]

++ qsort([Y || Y <- Xs, Y>=X]).

Using spawn_link, self, and message passing, write a parallel Er-
lang version of qsort. As above, ensure that the task granularity is
not so fine that the overheads of parallelism dominate the run-time. 4 points

3

3. The Par monad 8 points

(a) Briefly explain how Marlow’s Par Monad builds upon Claessen’s Poor
Man’s Concurrency Monad. 2 points

(b) Write a parallel divide-and-conquer higher-order function in Haskell
for use in the Par monad. If you wish, you may use

parMapM :: NFData b => (a -> Par b) -> [a] -> Par [b]
4 points

(c) Define merge sort using your divide-and-conquer function. 2 points

4

4. Work and Depth 7 points

(a) In Blelloch’s cost model for data parallel programming, what do the
notions of work and depth (or span) express? How does expected
running time relate to work, depth and number of processors? 2 points

(b) The following is Blelloch’s Fast Fourier Transform (FFT) function
(for inputs whose length is a power of two), first a general version
and then one specialised to complex numbers:

function fft(a,w,add,mult) =

if #a == 1 then a

else

let r = {fft(b, even_elts(w), add, mult):

b in [even_elts(a),odd_elts(a)]}

in {add(a, mult(b, w)):

a in r[0] ++ r[0];

b in r[1] ++ r[1];

w in w};

function complex_fft(a) =

let

c = 2.*pi/float(#a);

w = {cos(c*float(i)),sin(c*float(i)) : i in [0:#a]};

add = ((ar,ai),(br,bi)) => (ar+br,ai+bi);

mult = ((ar,ai),(br,bi)) => (ar*br-ai*bi,ar*bi+ai*br);

in fft(a,w,add,mult);

The w input is a list of primitive nth roots of unity (the so-called
twiddle factors). What are the work and depth for this FFT function,
in terms of n, the length of the input sequence? Briefly explain your
reasoning. 2 points

(c) Consider the following variant of the stock market problem: given
the price of a stock at each day for n days, determine the biggest
profit you can make by buying one day and selling on a later day.
A simple sequential (serial) solution requires O(n) work for an input
sequence of length n. In NESL, the problem can be solved as follows:

function stock(a) =

max_val({x - y : x in a; y in min_scan(a)});

It uses min scan (a parallel scan) and max val, which is a parallel
fold. Is the work of this parallel solution still O(n)? Explain your
answer. What is the depth of the solution? 2 points

(d) Explain the difference between flat and nested data parallel compu-
tations. 1 points

5

5. Parallel Reduce Read the following definition of a parallel reduce func- 12 points
tion.

reduce(_,[X]) ->

X;

reduce(F,[X,Y]) ->

F(X,Y);

reduce(F,L) ->

{L1,L2} = lists:split(length(L) div 2,L),

Parent = self(),

Y = reduce(F,L2),

Pid = spawn_link(fun() -> Parent ! {self(),reduce(F,L1)} end),

receive

{Pid,X} ->

F(X,Y)

end.

Profile a call of reduce with Percept on a list of 15 elements resulted in
the following graph:

(a) How many processing cores can this version of reduce make good
use of? 1 points

(b) Why can’t this program take advantage of a larger number of cores?
1 points

(c) Make a small fix to the code above so that it makes better use of
parallelism. You need not copy the entire definition into your answer:
just write the modified lines and explain clearly where in the code
they should be placed. 1 points

6

(d) A weakness of the code above (even after your fix) is that, if recursive
calls to reduce take widely differing amounts of time, then cores
may remain idle even though there is work that could be done. For
example, in the situation in this diagram

then two recursive calls are ready, while two more are currently being
evaluated. The code above will wait for each busy call to terminate
before combining its result with its neighbour; however, a smarter
implementation could begin to combine the two available results al-
ready to use more parallelism. (Of course, this changes the order
in which results are combined, but we will assume this does not af-
fect the final result). Write a new version of reduce which uses this
idea to combine the results of recursive calls as soon as any two are
available. 4 points

(e) Recall that spawn_link(Node,Fun) spawns a process that calls Fun()
on the Erlang node Node. In a distributed system, we might want
to run reduce jobs on different nodes in the network to share the
workload. Write a load balancing server, which accepts requests of
the form {call,Pid,F}, calls F() on one of the nodes of the net-
work, and then sends the result back to Pid in a message of the
form {result,Res} (where Res is the value that F() returned). You
should ensure that you can make use of all nodes in your network,
but that each node has at most one job to execute at a time. 4 points

(f) What modification would you make to your reduce function to make
use of the load balancer you wrote in question 5e? 1 points

7

6. Map-Reduce 7 points

(a) map_reduce takes a mapper function, a reducer function, and input
data as parameters. Consider a näıve version in which the input data
is represented as a list. If map_reduce were defined in Haskell, what
would its type be? You need not include any class constraints, such
as Eq a, in the type that you give. 1 points

(b) Suppose the input data to map_reduce consists of pairs of a page
number and a list of words, such as

[{1,["hello","clouds"]},{2,["hello","sky"]}]

Write a mapper and a reducer function to convert this to an index
of words and page numbers. . . in this example,

[{"clouds",[1]},{"hello",[1,2]},{"sky",[2]}]
2 points

(c) Given the same input data, write a mapper and a reducer function
to associate each word with its total number of occurrences. Recall
that a word may occur several times on the same page. 2 points

(d) In Google’s implementation of Map-Reduce:

i. Explain the difference between local and replicated files.

ii. Which kind of file is used to hold the output of a map job?

iii. Which kind of file is used to hold the output of a reduce job?

iv. What actions are taken by the master node if a worker node
crashes? 2 points

8

7. Distributed systems and databases 7 points

(a) What is the circuit breaker pattern in distributed system design, and
when should it be used? 1 points

(b) What is a network partition? 1 points

(c) Brewer’s CAP-theorem is well known in the context of distributed
databases.

i. What do C, A and P stand for? Explain each term briefly (in
one sentence). 1 points

ii. What does the theorem say? 1 points

iii. Give an example in which a distributed database would be forced
to make the choice that the CAP-theorem forces on us.

Distributed key-value stores like Dynamo and Riak use vector clocks
(or version vectors) to track versions of each key-value pair. Suppose
we fetch the value of a key K from such a key-value store, and get
the value [1] with vector clock [{a,1},{b,1}], where a and b are
the names of nodes in the database cluster.

Explain what this vector clock tells us about the history of the key
K. 1 points

Now support that while serving a later request to read the value of
key K, the database receives the following three values from three
replicas of the key on different nodes:

• [1], with vector clock [{a,1},{b,1}],

• [2], with vector clock [{a,2},{b,1}],

• and [3], with vector clock [{a,1},{b,2}].

Which value(s) will be returned to the client as a result of the call? 1 points

(d) Assuming that the list values in the question above are intended to
represent sets, suggest a way for a client to resolve conflicts. What
would your method lead to in the example above? 1 points

9

8. Different approaches to parallel functional programming 4 points

Imagine that you work at a company that builds applications that are
highly data parallel, targetting several different parallel architectures. The
possibility of using Haskell is being discussed, as is the possibility of using
Single Assignment C (SAC). Your manager asks for your opinion. Pick
either a Haskell library (such as Repa) or SAC, whichever one you would
advocate. Write a description of your chosen approach, listing its pros
and cons.

10

