
SaC – Functional Programming for HP3

Chalmers Tekniska Högskola
3.5.2018

Sven-Bodo Scholz

performance?
sustainability?
affordability?

The Multicore Challenge

SVP SVP SVP SVP

SVP

SVP

SVPSVP

SVP

SVPSVPSVP

SVP SVP

SVPSVP

High Performance
High Portability
High Productivity

Typical Scenario

L
SVP SVP SVP SVP

SVP

SVP

SVPSVP

SVP

SVPSVPSVP

SVP SVP

SVPSVP

algorithm
MPI/

OpenMP

OpenCL
VHDL μTC

Tomorrow’s Scenario

algorithm

SVP SVP SVP SVP

SVP

SVP

SVPSVP

SVP

SVPSVPSVP

SVP SVP

SVPSVP

MPI/OpenMP

OpenCL

VHDL

μTC

The HP3 Vision

algorithm

SVP SVP SVP SVP

SVP

SVP

SVPSVP

SVP

SVPSVPSVP

SVP SVP

SVPSVP

MPI/OpenMP

OpenCL

VHDL

μTC

J

SAC: HP3 Driven Language
Design

&

HIGH-PRODUCTIVITY

Ø easy to learn
- C-like look and feel

Ø easy to program
-Matlab-like style
- OO-like power
- FP-like abstractions

Ø easy to integrate
- light-weight C interface

HIGH-PERFORMANCE

Ø no frills
- lean language core

Ø performance focus
- strictly controlled side-effects
- implicit memory management

Ø concurrency apt
- data-parallelism at core

HIGH-PORTABILITY

Ø no low-level facilities
- no notion of memory
- no explicit concurrency/ parallelism
- no notion of communication

What is Data-Parallelism?

Formulate algorithms in space rather than time!

prod = 1;
for(i=1; i<=10; i++) {

prod = prod*i;
}

prod = prod(iota(10)+1)

. . .

3628800

1

2

610

3628800

. . . 1 2

Why is Space Better than
Time?

3628800

1

2

6

. . .

741

3628800
3628800

. . . 1 2 10

2 90

.

. . . 2

6

20 56

120 5040

Compiler

sequential
code multi−threaded code

micro−threaded
code

prod(iota(n))

Another Example: Fibonacci
Numbers

if(n<=1)
return n;

} else {
return fib(n-1) + fib(n-2);

}

fib(2)fib(3)

fib(1)

fib(4)

fib(0) fib(1)

fib(2) fib(0) fib(1)

Another Example: Fibonacci
Numbers

int fib(int n)

if(n<=1)
return n;

} else {
return fib(n-1) + fib(n-2);

}

fib(4)

fib(3)

fib(1)

fib(4)

fib(0) fib(1)

fib(2) fib(0) fib(1)

fib(2)

fib(2)

fib(2)

fib(3)

Fibonacci Numbers – now
linearised!

Int fib’(int fst, int snd, int n)

if(n== 0)
return fst;

else
return fib’(snd, fst+snd, n-1)

fib(4)

snd: 1

fst: 0

fst: 1

snd: 1

fst: 1

snd: 2

fst: 2

snd: 3fib(4)

fib(3)

fib(3)

fib(2)

fib(2)

fib(1)

fib(1)

fib(0)

Fibonacci Numbers – now
data-parallel!

matprod(genarray([n], [[1, 1], [1, 0]])) [0,0]

11

01

11

01

11

01

1

1 1

2 11

01

1

3 2

2

fib(3)

fib(2)fib(3)

fib(4)

fib(1)

fib(2) fib(1)

fib(0)

Everything is an Array

Think Arrays!

ØVectors are arrays.
ØMatrices are arrays.
ØTensors are arrays.
Ø........ are arrays.

Everything is an Array

Think Arrays!

ØVectors are arrays.
ØMatrices are arrays.
ØTensors are arrays.
Ø........ are arrays.

ØEven scalars are arrays.
ØAny operation maps arrays to
arrays.
ØEven iteration spaces are arrays

Multi-Dimensional Arrays

14

S-Hack ’08

Array

Programming in

SaC

Sven-Bodo Scholz

Arrays as Data Structure

i

1 2 3

shape vector: [3]
data vector: [1, 2, 3]

i

j

k

10

7 8 9

1211
54 6

1 2 3
shape vector: [2, 2, 3]
data vector: [1, 2, 3, ..., 11, 12]

42
shape vector: []
data vector: [42]

Index-Free Combinator-Style
Computations

L2 norm:

Convolution step:

Convergence test:

sqrt(sum(square(A)))

W1 * shift(-1, A) + W2 * A + W1 * shift(1, A)

all(abs(A-B) < eps)

Shape-Invariant Programming

l2norm([1,2,3,4])

sqrt(sum(sqr([1,2,3,4])))

sqrt(sum([1,4,9,16]))

sqrt(30)

5.4772

Shape-Invariant Programming

l2norm([[1,2],[3,4]])

sqrt(sum(sqr([[1,2],[3,4]])))

sqrt(sum([[1,4],[9,16]]))

sqrt([5,25])

[2.2361, 5]

Where do these Operations
Come from?

double l2norm(double[*] A)
{
return(sqrt(sum(square(A)));

}

double square(double A)
{
return(A*A);

}

18

Where do these Operations
Come from?

double square(double A)
{

return(A*A);
}

double[+] square(double[+] A)
{

res = with {
(. <= iv <= .) : square(A[iv]);

} : modarray(A);
return(res);

}

19

With-Loops
with {

([0,0] <= iv < [3,4]) : square(iv[0]);
} : genarray([3,4], 42);

20

[0,0] [0,1] [0,2] [0,3]
[1,0] [1,1] [1,2] [1,3]
[2,0] [2,1] [2,2] [2,3]

0 0 0 0
1 1 1 1
4 4 4 4

indices values

With-Loops
with {

([0,0] <= iv <= [1,1]) : square(iv[0]);
([0,2] <= iv <= [1,3]) : 42;
([2,0] <= iv <= [2,2]) : 0;

} : genarray([3,4], 21);

21

[0,0] [0,1] [0,2] [0,3]
[1,0] [1,1] [1,2] [1,3]
[2,0] [2,1] [2,2] [2,3]

0 0 42 42
1 1 42 42
0 0 0 21

indices values

With-Loops
with {

([0,0] <= iv <= [1,1]) : square(iv[0]);
([0,2] <= iv <= [1,3]) : 42;
([2,0] <= iv <= [2,3]) : 0;

} : fold(+, 0);

22

[0,0] [0,1] [0,2] [0,3]
[1,0] [1,1] [1,2] [1,3]
[2,0] [2,1] [2,2] [2,3]

0 0 42 42

1 1 42 42
0 0 0 0

indices values

map reduce
170

Set-Notation and With-Loops

{ iv -> a[iv] + 1}

with {
(0*shape(a) <= iv < shape(a)) : a[iv] + 1;

} : genarray(shape(a), zero(a))

23

Observation

Ø most operations boil down to With-loops
Ø With-Loops are the source of concurrency

Computation of π

25

Computation of π

26

double f(double x)
{

return 4.0 / (1.0+x*x);
}

int main()
{

num_steps = 10000;
step_size = 1.0 / tod(num_steps);
x = (0.5 + tod(iota(num_steps))) * step_size;
y = { iv-> f(x[iv])};
pi = sum(step_size * y);

printf(" ...and pi is: %f\n", pi);
return(0);

}

Example: Matrix Multiply

27

S-Hack ’08

Array

Programming in

SaC

Sven-Bodo Scholz

Examples: Matrix Multiply

j

i

j

i
j

i

(AB)i ,j =
X

k

Ai ,k ⇤ Bk,j

{ [i,j] -> sum(A[[i,.]] * B[[.,j]]) }

Example: Relaxation

28

11

12 res = {[i,j] -> sum(id[[i ,.]] * mat [[. ,j]])};
13 print (res);
14

15 return 0;
16 }

Listing 2.17: Matrix Product

After defining two matrices id and mat in lines6 and 8, respectively, the matrix product id � mat
is specified in line 12. id[[i,.]] selects the i-th row of id and mat[[.,j]] refers to the j-th column
of mat. The index ranges for i and j are deduced from the accesses into id and mat, respectively. A
variable k as used in the mathematical specification is not required as we can make use of the array
operations * and sum.

Relaxation

Numerical approximations to the solution of partial differential equations are often made by applying
so-called relaxation methods. These require large arrays to be iteratively modified by so-called stencil
operations until a certain convergence criterion is met. Fig. 2.1 illustrates such a stencil operation. A

0

1/8

0

4/8

1/8

1/80

1/8

0

Figure 2.1: A 5-point-stencil relaxation with cyclic boundaries

stencil operation re-computes all elements of an array by computing a weighted sum of all neighbor
elements. The weights that are used solely depend on the positions relative to the element to be
computed rather than the position in the result array. Therefore, we can conveniently specify these
weights by a single matrix of weights as shown on the left side of Fig. 2.1.

In this example, only 4 direct neighbor elements and the old value itself are taken into account for
computing a new value. (Hence its name: 5-point-stencil operation). As can be seen from the weights, a
new value is computed from old ones by adding an eight-th each of the values of the upper, lower, left,
and right neighbors to half of the old value.

As demonstrated on the right side of Fig. 2.1 our example assumes so-called cyclic boundary conditions.
This means that the missing neighbor elements at the boundaries of the matrix are taken from the
opposite sides as indicated by the elliptic curves.

In the sequel, we concentrate on the specification of a single relaxation step, i.e. on one re-
computation of the entire array. This can be specified as a single line of SAC code:

1 use StdIO: all;
2 use Array: all;
3

4 int main ()
5 {
6 weights = [[0d, 1d, 0d], [1d, 4d, 1d], [0d, 1d, 0d]] / 8d;
7

8 vect = [1d, 2d, 3d, 4d];

24

weights = [[0d,1d,0d], [1d,4d,1d], [0d,1d,0d]] / 8d;
in = ….
out = { iv -> sum(

{ ov -> weights[ov] * rotate(1-ov, in)[iv]}) };

Programming in a Data-
Parallel Style - Consequences

•much less error-prone indexing!
• combinator style
• increased reuse
• better maintenance
• easier to optimise
• huge exposure of concurrency!

What not How (1)

re-computation not considered harmful!

a = potential(firstDerivative(x));
a = kinetic(firstDerivative(x));

What not How (1)

re-computation not considered harmful!

a = potential(firstDerivative(x));
a = kinetic(firstDerivative(x));

tmp = firstDerivative(x);
a = potential(tmp);
a = kinetic(tmp);

compiler

What not How (2)

variable declaration not required!

int main()
{

istep = 0;
nstop = istep;
x, y = init_grid();
u = init_solv (x, y);

...

What not How (2)

variable declaration not required, ...
but sometimes useful!

int main()
{

double[256] x,y;

istep = 0;
nstop = istep;
x, y = init_grid();
u = init_solv (x, y);

...

acts like an assertion here!

What not How (3)

data structures do not imply memory layout

a = [1,2,3,4];

b = genarray([1024], 0.0);

c = stencilOperation(a);

d = stencilOperation(b);

What not How (3)

data structures do not imply memory layout

a = [1,2,3,4];

b = genarray([1024], 0.0);

c = stencilOperation(a);

d = stencilOperation(b);

could be implemented by:

int a0 = 1;
int a1 = 2;
int a2 = 3;
int a3 = 4;

What not How (3)

data structures do not imply memory layout

a = [1,2,3,4];

b = genarray([1024], 0.0);

c = stencilOperation(a);

d = stencilOperation(b);

or by:

int a[4] = {1,2,3,4};

What not How (3)

data structures do not imply memory layout

a = [1,2,3,4];

b = genarray([1024], 0.0);

c = stencilOperation(a);

d = stencilOperation(b);

or by:

adesc_t a = malloc(...)
a->data = malloc(...)
a->data[0] = 1;
a->desc[1] = 2;
a->desc[2] = 3;
a->desc[3] = 4;

What not How (4)

data modification does not imply in-place operation!

a = [1,2,3,4];

b = modarray(a, [0], 5);

c = modarray(a, [1], 6);

1 2 3 4

1 6 3 4

5 2 3 4

copy

copy or update

What not How (5)

truely implicit memory management
qpt = transpose(qp);
deriv = dfDxBoundary(qpt);
qp = transpose(deriv);

qp = transpose(dfDxNoBoundary(transpose(qp), DX));

≡

Challenge: Memory
Management: What does the

λ-calculus teach us?

40

f(a, b , c) f(a, b ,c)
{

... a..... a....b.....b....c...
}

conceptual copies

How do we implement this?
– the scalar case

41

f(a, b , c) f(a, b ,c)
{

... a..... a....b.....b....c...
}

conceptual copies

operation implementation
read read from stack
funcall push copy on stack

How do we implement this?
– the non-scalar case

naive approach

42

f(a, b , c) f(a, b ,c)
{

... a..... a....b.....b....c...
}

conceptual copies

operation non-delayed copy
read O(1) + free
update O(1)
reuse O(1)
funcall O(1) / O(n) + malloc

How do we implement this?
– the non-scalar case

widely adopted approach

43

f(a, b , c) f(a, b ,c)
{

... a..... a....b.....b....c...
}

conceptual copies

operation delayed copy + delayed GC
read O(1)
update O(n) + malloc
reuse malloc
funcall O(1)

GC

How do we implement this?
– the non-scalar case

reference counting approach

44

f(a, b , c) f(a, b ,c)
{

... a..... a....b.....b....c...
}

conceptual copies

operation delayed copy + non-delayed GC
read O(1) + DEC_RC_FREE

update O(1) / O(n) + malloc

reuse O(1) / malloc

funcall O(1) + INC_RC

How do we implement this?
– the non-scalar case

a comparison of approaches

45

operation non-delayed copy delayed copy +
delayed GC

delayed copy + non-
delayed GC

read O(1) + free O(1) O(1) + DEC_RC_FREE
update O(1) O(n) + malloc O(1) / O(n) + malloc
reuse O(1) malloc O(1) / malloc
funcall O(1) / O(n) + malloc O(1) O(1) + INC_RC

Avoiding Reference Counting
Operations

a = [1,2,3,4];

b = a[1];

c = f(a, 1);

d= a[2];

e = f(a, 2);

we would like to avoid RC here!

BUT, we cannot avoid RC here!

clearly, we can avoid RC here!

and here!

46

NB: Why don’t we have
RC-world-domination?

47

1

1

2

3

3

Going Multi-Core

48

single-threaded

rc-op

rc-op

rc-op

rc-op

rc-op

rc-op

data-parallel

rc-op

rc-op

rc-op

rc-op

rc-op

rc-op

... ...

local variables do not escape!
relatively free variables can only benefit from reuse in 1/n cases!

=> use thread-local heaps
=> inhibit rc-ops on rel-free vars

J

Bi-Modal RC:

49

local norc

fork

join

SaC Tool Chain

• sac2c – main compiler for generating
executables; try
– sac2c –h
– sac2c –o hello_world hello_world.sac
– sac2c –t mt_pth
– sac2c –t cuda

• sac4c – creates C and Fortran libraries from
SaC libraries

• sac2tex – creates TeX docu from SaC files

50

More Material

Ø www.sac-home.org

§ Compiler

§ Tutorial

Ø [GS06b] Clemens Grelck and Sven-Bodo Scholz. SAC: A functional array

language for efficient multithreaded execution. International Journal of
Parallel Programming, 34(4):383--427, 2006.

Ø [WGH+12] V. Wieser, C. Grelck, P. Haslinger, J. Guo, F. Korzeniowski, R. Bernecky,

B. Moser, and S.B. Scholz. Combining high productivity and high performance in

image processing using Single Assignment C on multi-core CPUs and many-core

GPUs. Journal of Electronic Imaging, 21(2), 2012.

Ø [vSB+13] A. Šinkarovs, S.B. Scholz, R. Bernecky, R. Douma, and C. Grelck. SAC/C

formulations of the all-pairs N-body problem and their performance on SMPs and

GPGPUs Concurrency and Computation: Practice and Experience, 2013.

51

http://www.sac-home.org/

Outlook

• There are still many challenges ahead, e.g.
ØNon-array data structures
ØArrays on clusters
ØJoining data and task parallelism
ØBetter memory management
ØApplication studies
ØNovel Architectures
Ø… and many more ...

• If you are interested in joining the team:
Øtalk to me J

52

