Parallel Functional Programming
Lecture 2

Mary Sheeran

(with thanks to Simon Marlow for use of slides)

http://www.cse.chalmers.se/edu/course/pfp



Remember nfib

nfib :: Integer -> Integer
nfibn | nk2 =1
nfib n = nfib (n-1) + nfib (n-2) + 1

e A trivial function that returns the number of
calls made—and makes a very large number!

10 177
20 21891
25 242785

30 2692537



Sequential

Activity

HEC O

nfib 40



Explicit Parallelism

par Xy

e "Spark” x in parallel with computing y

— (and return y)

* The run-time system may convert a spark into
a parallel task—or it may not

e Starting a task is cheap, but not free



Explicit Parallelism

X par y




Explicit sequencing

pPseq X'y

e Evaluate x before y (and return vy)

* Used to ensure we get the right evaluation
order



Explicit sequencing

X pseq y

* Binds more tightly than par



Using par and pseq

import Control.Parallel

rfib :: Integer -> Integer
rfibn | n < 2 1
rfib n = nfl par nf2 pseg nf2 + nfl + 1
where nfl = rfib (n-1)
nf2 = rfib (n-2)



Using par and pseq

import Control.Parallel

rfib :: Integer -> Integer
rfibn | n < 2 1
rfib n = nfl par (nf2 "‘psegq nf2 + nfl + 1)
where nfl = rfib (n-1)
nf2 = rfib (n-2)

* Evaluate nfl in parallel with (Evaluate nf2
before ...)



Looks promsing
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Actmity
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What’s happening?

S ./NF +RTS -N4 -s



Hah

331160281

SPARKS: 165633686 (105 converted, 0 overflowed, 0 dud, 165098698 GC'd, 534883 fizzled)

INIT time 0.00s ( 0.00s elapsed)
MUT time 2.31s ( 1.98s elapsed)
GC time 7.58s ( 0.51s elapsed)
EXIT time 0.00s ( 0.00s elapsed)
Total time 9.89s ( 2.49s elapsed)



Hah

331160281

SPARKS: 165633686 (105 converted, O overflowed, 0 dud, 165098698 GC'd, 534883 fizzled)

INIT time 0.00s (
MUT time 2.31s ( converted = turned into
GC time 7.58s ( O. useful parallelism

EXIT time 0.00s ( O.
Total time 9.89s ( 2.4€



Controlling Granularity

e Let’s use a threshold for going sequential, t

tfib :: Integer -> Integer -> Integer
tfib t n | n < t = sfib n
tfib t n = nfl 'par nf2 "‘pseq nfl + nf2 + 1
where nfl = tfib t (n-1)
nf2 = tfib t (n-2)



Better

tfib 32 40 gives

SPARKS: 88 (13 converted, 0 overflowed, 0 dud, 0 GC'd, 75 fizzled)

INIT time 0.00s ( 0.01s elapsed)
MUT time 2.42s ( 1.36s elapsed)
GC time 3.04s ( 0.04s elapsed)
EXIT time 0.00s ( 0.00s elapsed)
Total time 5.47s ( 1.41s elapsed)



What are we controlling?

The division of the work into possible parallel tasks (par) including
choosing size of tasks

GHC runtime takes care of choosing which sparks to actually evaluate
in parallel and of distribution

Need also to control order of evaluation (pseq) and degree of
evaluation

Dynamic behaviour is the term used for how a pure function gets
partitioned, distributed and run

Remember, this is deterministic parallelism. The answer is always the
same!



positive so far (par and pseq)

Don’t need to
express communication
express synchronisation
deal with threads explicitly



BUT

par and pseq are difficult to use ®



BUT

par and pseq are difficult to use ®

MUST

Pass an unevaluated computation to par

It must be somewhat expensive

Make sure the result is not needed for a bit

Make sure the result is shared by the rest of the
program



Even if you get it right

Original code + par + pseq + rnf etc.
can be opaque



Sepa rate concerns

Algorithm




Sepa rate concerns

Evaluation Strategy

Algorithm




Evaluation Strategies

express dynamic behaviour independent of the
algorithm

provide abstractions above par and pseq

are modular and compositional
(they are ordinary higher order functions)

can capture patterns of parallelism
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The Eval monad

import Control.Parallel.Strategies

data Eval a
instance Monad Eval

runEval :: Eval a -> a

rpar :: a -> Eval a
rseq :: a -> Eval a
Eval is pure

Just for expressing sequencing between rpar/rseq — nothing
more

Compositional — larger Eval sequences can be built by
composing smaller ones using monad combinators

Internal workings of Eval are very simple (see Haskell
Symposium 2010 paper)

Slide borrowed from Simon Marlow’s CEFP slides, with thanks




What does rpar actually do?

X <= rpar e

rpar creates a spark by writing an entry in the spark pool
— rparis very cheap! (not a thread)

the spark pool is a circular buffer

when a processor has nothing to do, it tries to remove an
entry from its own spark pool, or steal an entry from
another spark pool (work stealing)

when a spark is found, it is evaluated
The spark pool can be full — watch out for spark overflow!

- II Spark Pool

Slide borrowed from Simon Marlow’s CEFP slides, with thanks




Expressing evaluation order

qgfib :: Integer -> Integer

gfibn | n< 2 =1

qfib n = runEval $ do
nfl <- rpar (qfib (n-1))
nf2 <- rseq (qgfib (n-2))
return (nfl + nf2 + 1)



Expressing evaluation order

gqfib :: Integer -> Integer

gfibn | n< 2 =1

qfib n = runEval $ do
nfl <- rpar _(go
nf2 <- rseq (qfik
return (nfl + nf2

do this
spark gfib (n-1)

"My argument could be evaluated in parallel"



Expressing evaluation order

gqfib :: Integer -> Integer

gfibn | n< 2 =1

qfib n = runEval $ do
nfl <- rpar _(go
nf2 <- rseq (qfik
return (nfl + nf2

do this
spark gfib (n-1)

"My argument could be evaluated in parallel”

Remember that the argument should be a thunk!



Expressing evaluation order

gqfib :: Integer -> Integer
gfibn | n< 2 =1
qfib n = runEval $ do
nfl <- rpar (qfib (n-1))
nf2 <- rseq (gqgfib (n-2))
return (nfl + : and this
Evaluate gfib(n-2)
and wait for

result

"Evaluate my argument and wait for the result."



Expressing evaluation order

gqfib :: Integer -> Integer

gfibn | n< 2 =1

qfib n = runEval $ do
nfl <- rpar (qfib (n-1))
nf2 <- rseq (qgfib (n-2))
return (nfl + nf2 + 1)




Expressing evaluation order

gqfib :: Integer -> Integer

gfibn | n< 2 =1

qfib n = runEval $ do
nfl~_- rpar (qfib (n-1))
nf2 <-"geq (gfib (n-2))
return (n

pull the answer

out of the
monad




Techniques for Multicore and Mudtithreaded Programming

Parallel an
Concurrent
Programming
s EN G

O’REILLY* Simon Marlow

Read Chapters 2 and 3



What do we have?

The Eval monad raises the level of abstraction for pseq and par; it makes
fragments of evaluation order first class, and lets us compose them
together. We should think of the Eval monad as an Embedded Domain-
Specific Language (EDSL) for expressing evaluation order, embedding a
little evaluation-order constrained language inside Haskell, which does
not have a strongly-defined evaluation order.

(from Haskell 10 paper)



a possible parallel map

pMap :: (a -> b) -> [a] -> Eval [Db]
pMap £ [] = return []
pMap £ (a:as) = do

b <- rpar (f a)

bs <- pMap f as

return (b:bs)



a possible parallel map

import Control.Parallel.Strategies

foo :: Integer -> Integer
foo a = sum [1 .. a]
main

= print $ sum $ runEval $
pMap foo (reverse [1..10000])



compile

ghc -02 -threaded -rtsopts Ll.hs



run & get stats

$ ./L1 +RTS -N4 -s -A100M



run & get stats

$ ./L1 +RTS -N4 -s -A100M

Sets GC nursery size
Effectively turns off the collector and
removes its effects from benchmarking
(See notes in Lab A)




SPARKS: 10000 (8195 converted, 1805 overflowed, 0 dud, 0 GC'd, O fizzled)

INIT time 0.003s ( 0.009s elapsed)
MUT time 1.346s ( 0.410s elapsed)
GC time 0.010s ( 0.003s elapsed)
EXIT time 0.001s ( 0.000s elapsed)
Total time 1.361s ( 0.423s elapsed)



#sparks =

length of list

SPARKS: 10000 (8195 converted, 1805 overflowed, 0 dud, 0 GC'd, O fizzled)

INIT time 0.003s ( 0.009s elapsed)
MUT time 1.346s ( 0.410s elapsed)
GC time 0.010s ( 0.003s elapsed)
EXIT time 0.001s ( 0.000s elapsed)
Total time 1.361s ( 0.423s elapsed)



Compile for Threadscope

ghc -02 -threaded -rtsopts -eventlog Ll.hs

Using prebuilt binaries for Threadscope is the way to go:
https://www.stackage.org/package/threadscope



https://www.stackage.org/package/threadscope

Run for Threadscope

$ ./L1 +RTS -N4 -1f -A100M



File View Move Help

Bl ke sl & G

Key | Traces | Bookmarks |

I running
am GC

GC waiting
create thread
seq GC req
par GC req
migrate thread
thread wakeup
shutdown
user message
perf counter

perf tracepoint

I _all create spark

| o |l dud spark

I _all overflowed spark
I _all runspark

| o |l fizzled spark

I o |l GCed spark

Timeline

HEC O

HEC 1

HEC 2

HEC3

kil

Time | Heap | GG Spark stats | Spark sizes | Process info | Raw events
HEC |Total |Converted |Overfiowed |Dud |GC'd |Fizzled

Total 10000 8200 1800
HEC 0 10000 621 1800
HEC1 0 2512 0
HEC2 0 2557 0

HEC3 0 2510 0

0

0
0
0
0

o © o ©

0

0

l © © o ©




converted

overflowed

dud

GC'd

fizzled

real parallelism at runtime
no room in spark pool
first arg of rpar already eval’ed

sparked expression unused
(removed from spark pool)

uneval’d when sparked, later
eval’d independently => removed



our parallel map

pMap :: (a -> b) -> [a] -> Eval [Db]
pMap £ [] = return []
pMap £ (a:as) = do

b <- rpar (f a)

bs <- pMap f as

return (b:bs)



parallel map

+ Captures a pattern of parallelism

+ good to do this for standard higher order function like map
+ can easily do this for other standard sequential patterns




BUT

- had to write a new version of map

- mixes algorithm and dynamic behaviour




Evaluation Strategies

Raise level of abstraction @

Encapsulate parallel programming idioms as
reusable components that can be composed



Strategy (as of 2010)

type Strategy a = a -> Eval a

function
evaluates its input to some degree

traverses its argument and uses rpar and rseq to express
dynamic behaviour / sparking

returns an equivalent value in the Eval monad



using

using :: a —-> Strategy a -> a

X using strat = runEval (strat x)

Program typically applies the strategy to a structure and then uses the returned value,
discarding the original one (which is why the value had better be equivalent)

An almost identity function that does some evaluation and expresses how that can
be parallelised



withStrategy

withStrategy :: Strategy a -> a -> a
withStrategy = flip using



Composing strategies

dot :: Strategy a -> Strategy a -> Strategy a
strat2 "dot strat2 = strat2 . runEval . stratl



Composing strategies

dot :: Strategy a -> Strategy a -> Strategy a
strat2 "dot strat2 = strat2 . runEval . stratl

strat2 . withStrategy stratl



Basic strategies

rO0 :: Strategy a
r0 x return x

rpar :: Strategy a
rpar x = x par return x

rseq :: Strategy a
rseq x = x pseq return x

rdeepseq :: NFData a => Strategy a
rdeepseq x = rnf x pseq return x



Basic strategies

NO evaluation

rpar :: Strategy a
rpar x = x par return x

rseq :: Strategy a
rseq x = x pseq return x

rdeepseq :: NFData a => Strategy a
rdeepseq x = rnf x "pseq return x



Basic strategies

rO0 :: Strategy a
r0 x return x

rpar :: Strategy a
rpar x = x par return x

rseq :: Strategy a
rseq x = x pseq return x

rdeepseq :: NFData a => Strategy a
rdeepseq x = rnf x pseq return x



Basic strategies

rO0 :: Strategy a
r0 x return x

rpar :: Strategy a
rpar x = x par return x

evaluate x

to WHNF
rseq :: Strategy a -

rseq x = x pseq return x

rdeepseq :: NFData a => Strategy a
rdeepseq x = rnf x pseq return x



Basic strategies

r0 :: Strategy a
r0 x return x

rpar :: Strategy a
rpar x = x par return x

rseq :: Strategy a
rseq x = x pseq return x

fully evaluate x
rdeepseq :: NFData &

rdeepseq x = rnf x pseq re



evallList

evallist :: Strategy a -> Strategy [a]
evallList s [] = return []
evallist s (x:xs) = do x’ <- s x
xs’ <- evallist s xs
return (x’:xs’)



evallList

evallList :: Strategy a -> Strateqgy [a]
evalList s [] return []
evallist s (x: do x’ <- s x

Takes a Strategy on a and returns a Strategy

on lists of a
Building strategies from smaller ones



parlList

evallist :: Strategy a -> Strategy [a]
evallist s [] = return |[]
evallist s (x:xs) = do x’ <- s x

xs’ <- evallist s xs

return (x’:xs’)

parList :: Strategy a -> Strategy [a]
parlist s = evallist (rpar "dot  s)



In reality

evallList :: Strategy a -> Strateqgy [a]
evallist = evalTraversable

parlList :: Strategy a -> Strategy [a]
parList = parTraversable



In reality

evallist :: Strategy a -> Strategy [a]
evallist = evalTraversable

trategy a -> Strateqgy [a]
aversable

The equivalent of evallist and of parlList are available for many
data structures (Traversable). So defining parX for many X
is really easy

=> generic strategies for data-oriented parallelism




How do we use a Strategy?

type Strategy a = a -> Eval a
We could just use runEval
But this is better:
X using s = runteval (s x)
e.g.
Why better? Because we have a “law”:
— X UsIng s = X

— We can insert or delete “"using” s” without changing
the semantics of the program




Is that really true?

* Well, not entirely.

1. It relies on Strategies returning “the same value”
(identity-safety)
— Strategies from the library obey this property
— Be careful when writing your own Strategies
2. x'using s might do more evaluation than just x.

— Sothe program with x ‘using’ s might be | , but the
program with just x might have a value

* if identity-safety holds, adding using cannot make the
program produce a different result (other than | )




parListChunk :: Int -> Strategy a -> Strategy [a]
parListChunk n strat xs
| n <=1 = parList strat xs
| otherwise
= concat " fmap  parlist (evallist strat) (chunk n xs)



parListChunk :: Int -> Strategy a -> Strategy [a]
parListChunk n strat xs
| n <=1 = parList strat xs
| otherwise
= concat " fmap  parlist (evallist strat) (chunk n xs)

chunk :: Int -> [a] -> [[a]]
chunk [] = []
Chunk n xs = as : chunk n bs
where
(as,bs) = splitAt n xs



parListChunk :: Int -> Strategy a -> Strategy [a]

parListChunk n strat
n

evallList strat



parListChunk :: Int -> Strategy a -> Strategy [a]

Before

print $ sum $ runEval $ pMap foo (reverse [1..10000])

Now

print $ sum $
(map foo (reverse [1..10000]) “using’  parListChunk 50 rdeepseq )

SPARKS: 200 (200 converted, 0 overflowed, 0 dud, 0 GC'd, O fizzled)



parListChunk :: Int -> Strategy a -> Strategy [a]

Before

Remember not to be a control freak, though.
2R ] Generating plenty of sparks gives the
runtime the freedom it needs to make good

Now choices (=> Dynamic partitioning for free)

print $ sum $

(map foo (reverse [1. using parListChunk 50 rdeepseq )

SPARKS: 200 (200 converted, 0 overflowed, 0 dud, 0 GC'd, O fizzled)



import Criterion.Main

check k = sum $
(map foo (reverse [1..10000])
‘using’
parListChunk k rdeepseq )

main = defaultMain [bench "L1" (nf check 100)]



$ ./L1 +RTS -N4 -Al0oM
benchmarking L1

time 510.2 ps

0.998 R?
mean 512.4 us
std dev 18.19 us

variance introduced by outliers:

(503.5 us ..
.. 0.999 R2?)
(508.1 us ..

(0.997 R?

(14.85 ps

517.3 us)

518.3 us)
23.18 us)

28% (moderately inflated)



using is not always what we need

* Trying to pull apart algorithm and
coordination in gfib (from earlier) doesn’t

really give a satisfactory answer (see Haskell
10 paper)

(If the worst comes to the worst, one can get

explict control of threads etc. in concurrent
Haskell, but determinism is lost... )



Divide and conquer

Capturing patterns of parallel computation is a
major strong point of strategies

D&C is a typical example (see also parBuffer,
parallel pipelines etc.)

divCong :: (a -> b) function on base cases
-> a input
-> (a -> Bool) par threshold reached?
-> (b -> b -> b) combine
-> (a -> Maybe (a,a)) divide

-> b result



Divide and Conquer

divConq f arg threshold conquer divide = go arg

where
go arg =
case divide arg of
Nothing -> £ arg
Just (10,r0) -> conquer 11 rl ‘using‘' strat
where

11 = go 10
rl = go r0

strat x = do r 11; r rl; return x
where r | threshold arg = rseq
| otherwise = rpar

Separates algorithm and strategy
A first inkling that one can probably do interesting things by programming with
strategies



Skeletons

* encode fixed set of common coordination patterns
and provide efficient parallel implementations (Cole,
1989)

* Popularin both functional and non-functional
languages. See particularly Eden (Loogen et al, 2005)

A difference: one can / should roll ones own strategies



+

+

+

+

+

Strategies: summary

elegant redesign by Marlow et al (Haskell 10)

better separation of concerns

Laziness is essential for modularity

generic strategies for (Traversable) data structures
Marlow’s book contain a nice kmeans example. Read it!

Having to think so much about evaluation order is worrying!
Laziness is not only good here. (Cue the Par Monad Lecture!)



Strategies: summary

Evaluation Strategy

Algorithm



Better visualisation




Better visualisation




Better visualisation







Simon Marlow’s landscape for parallel
Haskell

e Parallel
— par/pseq 1
— Strategies 2
— Par Monad 3
— Repa
— Accelerate
— DPH

* Concurrent
— forklO
— MVar
— STM
— async
— Cloud Haskell




Course reps??



In the meantime

Read papers and PCPH
Start on Lab A (due 23.59 April 12)
Exercise class tomorrow at 15.15 (EC)
Note office hours of TAs
Markus, tues 10.00-11.00
Max, thu 14.00-15.00
Use them!



