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Remember nfib

• A trivial function that returns the number of
calls made—and makes a very large number!

nfib :: Integer -> Integer
nfib n | n<2 = 1
nfib n = nfib (n-1) + nfib (n-2) + 1

n nfib n
10 177
20 21891
25 242785
30 2692537



Sequential

nfib 40



Explicit Parallelism

par x y
• ”Spark” x in parallel with computing y 
– (and return y)

• The run-time system may convert a spark into
a parallel task—or it may not

• Starting a task is cheap, but not free



Explicit Parallelism

x `par` y



Explicit sequencing

• Evaluate x before y (and return y)

• Used to ensure we get the right evaluation
order

pseq x y



Explicit sequencing

• Binds more tightly than par

x `pseq` y



Using par and pseq

import Control.Parallel

rfib :: Integer -> Integer
rfib n | n < 2 = 1
rfib n = nf1 `par` nf2 `pseq` nf2 + nf1 + 1
where nf1 = rfib (n-1)

nf2 = rfib (n-2) 



Using par and pseq

• Evaluate nf1 in parallel with (Evaluate nf2 
before …)

import Control.Parallel

rfib :: Integer -> Integer
rfib n | n < 2 = 1
rfib n = nf1 `par` (nf2 `pseq` nf2 + nf1 + 1)
where nf1 = rfib (n-1)

nf2 = rfib (n-2) 



Looks promsing



Looks promsing



What’s happening?

$ ./NF  +RTS  -N4  -s

-s   to get stats



Hah
331160281

…

SPARKS: 165633686 (105 converted, 0 overflowed, 0 dud, 165098698 GC'd, 534883 fizzled)

INIT    time    0.00s  (  0.00s elapsed)
MUT     time    2.31s  (  1.98s elapsed)
GC      time    7.58s  (  0.51s elapsed)
EXIT    time    0.00s  (  0.00s elapsed)
Total   time    9.89s  (  2.49s elapsed)



Hah
331160281

…

SPARKS: 165633686 (105 converted, 0 overflowed, 0 dud, 165098698 GC'd, 534883 fizzled)

INIT    time    0.00s  (  0.00s elapsed)
MUT     time    2.31s  (  1.98s elapsed)
GC      time    7.58s  (  0.51s elapsed)
EXIT    time    0.00s  (  0.00s elapsed)
Total   time    9.89s  (  2.49s elapsed)

converted = turned into
useful parallelism



Controlling Granularity

• Let’s use a threshold for going sequential, t

tfib :: Integer -> Integer -> Integer
tfib t n | n < t = sfib n
tfib t n = nf1 `par` nf2 `pseq` nf1 + nf2 + 1
where nf1 = tfib t (n-1)

nf2 = tfib t (n-2)



Better

SPARKS: 88 (13 converted, 0 overflowed, 0 dud, 0 GC'd, 75 fizzled)

INIT    time    0.00s  (  0.01s elapsed)
MUT     time    2.42s  (  1.36s elapsed)
GC      time    3.04s  (  0.04s elapsed)
EXIT    time    0.00s  (  0.00s elapsed)
Total   time    5.47s  (  1.41s elapsed)

tfib 32 40                       gives



What are we controlling?
The division of the work into possible parallel tasks  (par)   including

choosing size of tasks
GHC runtime takes care of choosing which sparks to actually evaluate

in parallel and of distribution

Need also to control order of evaluation (pseq) and degree of 
evaluation

Dynamic behaviour is the term used for how a pure function gets 
partitioned, distributed and run

Remember, this is deterministic parallelism. The answer is always the 
same!



positive so far (par and pseq)

Don’t need to
express communication
express synchronisation
deal with threads explicitly



BUT

par and pseq are difficult to use L



BUT

par and pseq are difficult to use L

MUST
Pass an unevaluated computation to par
It must be somewhat expensive

Make sure the result is not needed for a bit
Make sure the result is shared by the rest of the 
program



Even if you get it right

Original code + par + pseq + rnf etc.
can be opaque



Separate concerns

Algorithm



Separate concerns

Algorithm
Evaluation Strategy



Evaluation Strategies
express dynamic behaviour independent of the 

algorithm

provide abstractions above par and pseq

are modular and compositional
(they are ordinary higher order functions)

can capture patterns of parallelism



Papers

H
JFP 1998

Haskell’10



Papers

H
JFP 1998

Haskell’10

359



Papers

H
JFP 1998

Haskell’10

359

88



Papers

H
JFP 1993

Haskell’10

Redesigns strategies

richer set of parallelism combinators
Better specs (evaluation order) 
Allows new forms of coordination
generic regular strategies over data 
structures
speculative parellelism
monads everywhere J

Presentation is about New Strategies



Slide borrowed from Simon Marlow’s CEFP slides, with thanks



Slide borrowed from Simon Marlow’s CEFP slides, with thanks



Expressing evaluation order

qfib :: Integer -> Integer
qfib n | n < 2 = 1
qfib n = runEval $ do

nf1 <- rpar (qfib (n-1))
nf2 <- rseq (qfib (n-2))
return (nf1 + nf2 + 1)



Expressing evaluation order

qfib :: Integer -> Integer
qfib n | n < 2 = 1
qfib n = runEval $ do

nf1 <- rpar (qfib (n-1))
nf2 <- rseq (qfib (n-2))
return (nf1 + nf2 + 1)

do this   
spark qfib (n-1)

"My argument could be evaluated in parallel"



Expressing evaluation order

qfib :: Integer -> Integer
qfib n | n < 2 = 1
qfib n = runEval $ do

nf1 <- rpar (qfib (n-1))
nf2 <- rseq (qfib (n-2))
return (nf1 + nf2 + 1)

do this   
spark qfib (n-1)

"My argument could be evaluated in parallel""My argument could be evaluated in parallel”

Remember that the argument should be a thunk!



Expressing evaluation order

qfib :: Integer -> Integer
qfib n | n < 2 = 1
qfib n = runEval $ do

nf1 <- rpar (qfib (n-1))
nf2 <- rseq (qfib (n-2))
return (nf1 + nf2 + 1)and then this

Evaluate qfib(n-2) 
and wait for 
result

"Evaluate my argument and wait for the result."



Expressing evaluation order

qfib :: Integer -> Integer
qfib n | n < 2 = 1
qfib n = runEval $ do

nf1 <- rpar (qfib (n-1))
nf2 <- rseq (qfib (n-2))
return (nf1 + nf2 + 1)

the result



Expressing evaluation order

qfib :: Integer -> Integer
qfib n | n < 2 = 1
qfib n = runEval $ do

nf1 <- rpar (qfib (n-1))
nf2 <- rseq (qfib (n-2))
return (nf1 + nf2 + 1)

pull the answer
out of the 
monad



Read Chapters 2 and 3



What do we have?

The Eval monad raises the level of abstraction for pseq and par; it makes 
fragments of evaluation order first class, and lets us compose them 
together. We should think of the Eval monad as an Embedded Domain-
Specific Language (EDSL) for expressing evaluation order, embedding a 
little evaluation-order constrained language inside Haskell, which does
not have a strongly-defined evaluation order.

(from  Haskell 10 paper)



a possible parallel map

pMap :: (a -> b) -> [a] -> Eval [b]
pMap f [] = return []
pMap f (a:as) = do

b  <- rpar (f a)
bs <- pMap f as
return (b:bs)



a possible parallel map

import Control.Parallel.Strategies

foo :: Integer -> Integer
foo a = sum [1 .. a]

main
= print $ sum $ runEval $ 

pMap foo (reverse [1..10000])



compile

ghc -O2 -threaded -rtsopts L1.hs



run & get stats

$ ./L1 +RTS -N4 -s -A100M



run & get stats

$ ./L1 +RTS -N4 -s -A100M

Sets GC nursery size
Effectively turns off the collector and

removes its effects from benchmarking
(See notes in Lab A)



SPARKS: 10000 (8195 converted, 1805 overflowed, 0 dud, 0 GC'd, 0 fizzled)

INIT time 0.003s ( 0.009s elapsed)
MUT time 1.346s ( 0.410s elapsed)
GC time 0.010s ( 0.003s elapsed)
EXIT time 0.001s ( 0.000s elapsed)
Total time 1.361s ( 0.423s elapsed)



SPARKS: 10000 (8195 converted, 1805 overflowed, 0 dud, 0 GC'd, 0 fizzled)

INIT time 0.003s ( 0.009s elapsed)
MUT time 1.346s ( 0.410s elapsed)
GC time 0.010s ( 0.003s elapsed)
EXIT time 0.001s ( 0.000s elapsed)
Total time 1.361s ( 0.423s elapsed)

#sparks = 
length of list



Compile for Threadscope

ghc -O2 -threaded -rtsopts -eventlog L1.hs

Using prebuilt binaries for Threadscope is the way to go:
https://www.stackage.org/package/threadscope

https://www.stackage.org/package/threadscope


Run for Threadscope

$ ./L1 +RTS -N4 -lf -A100M





converted              real parallelism at runtime

overflowed           no room in spark pool

dud                         first arg of rpar already eval’ed

GC’d sparked expression unused 
(removed from spark pool)

fizzled                   uneval’d when sparked, later
eval’d independently => removed



our parallel map

pMap :: (a -> b) -> [a] -> Eval [b]
pMap f [] = return []
pMap f (a:as) = do

b  <- rpar (f a)
bs <- pMap f as
return (b:bs)



parallel map

parMap :: (a -> b) -> [a] -> Eval [b]
parMap f [] = return []
parMap f (a:as) = do

b <- rpar (f a)
bs <- parMap f as
return (b:bs)

+ Captures a pattern of parallelism
+ good to do this for standard higher order function like map
+ can easily do this for other standard sequential patterns



BUT

parMap :: (a -> b) -> [a] -> Eval [b]
parMap f [] = return []
parMap f (a:as) = do

b <- rpar (f a)
bs <- parMap f as
return (b:bs)

- had to write a new version of map
- mixes algorithm and dynamic behaviour



Evaluation Strategies

Raise level of abstraction

Encapsulate parallel programming idioms as 
reusable components that can be composed



Strategy (as of 2010)

type Strategy a = a -> Eval a

function

evaluates its input  to some degree

traverses its argument and uses rpar and rseq to express 
dynamic behaviour / sparking

returns an equivalent value in the Eval monad



using

using :: a -> Strategy a -> a

x `using` strat = runEval (strat x)

Program typically applies the strategy to a structure and then uses the returned value,
discarding the original one (which is why the value had better be equivalent)

An almost identity function that does some evaluation and expresses how that can
be parallelised



withStrategy

withStrategy :: Strategy a -> a -> a
withStrategy = flip using



Composing strategies

dot :: Strategy a -> Strategy a -> Strategy a
strat2 `dot` strat2 = strat2 . runEval . strat1



Composing strategies

dot :: Strategy a -> Strategy a -> Strategy a
strat2 `dot` strat2 = strat2 . runEval . strat1

==

strat2 . withStrategy strat1



Basic strategies

r0 :: Strategy a
r0 x = return x

rpar :: Strategy a
rpar x = x `par` return x

rseq :: Strategy a
rseq x = x `pseq` return x

rdeepseq :: NFData a => Strategy a
rdeepseq x = rnf x `pseq` return x



Basic strategies

r0 :: Strategy a
r0 x = return x

rpar :: Strategy a
rpar x = x `par` return x

rseq :: Strategy a
rseq x = x `pseq` return x

rdeepseq :: NFData a => Strategy a
rdeepseq x = rnf x `pseq` return x

NO evaluation



Basic strategies

r0 :: Strategy a
r0 x = return x

rpar :: Strategy a
rpar x = x `par` return x

rseq :: Strategy a
rseq x = x `pseq` return x

rdeepseq :: NFData a => Strategy a
rdeepseq x = rnf x `pseq` return x

spark  x



Basic strategies

r0 :: Strategy a
r0 x = return x

rpar :: Strategy a
rpar x = x `par` return x

rseq :: Strategy a
rseq x = x `pseq` return x

rdeepseq :: NFData a => Strategy a
rdeepseq x = rnf x `pseq` return x

evaluate x 
to WHNF



Basic strategies

r0 :: Strategy a
r0 x = return x

rpar :: Strategy a
rpar x = x `par` return x

rseq :: Strategy a
rseq x = x `pseq` return x

rdeepseq :: NFData a => Strategy a
rdeepseq x = rnf x `pseq` return x

fully evaluate x



evalList

evalList :: Strategy a -> Strategy [a]
evalList s [] = return []
evalList s (x:xs) = do x’ <- s x

xs’ <- evalList s xs
return (x’:xs’)



evalList

evalList :: Strategy a -> Strategy [a]
evalList s [] = return []
evalList s (x:xs) = do x’ <- s x

xs’ <- evalList s xs
return (x’:xs’)

Takes a Strategy on a and returns a Strategy
on lists of a
Building strategies from smaller ones



parList

evalList :: Strategy a -> Strategy [a]
evalList s [] = return []
evalList s (x:xs) = do x’ <- s x

xs’ <- evalList s xs
return (x’:xs’)

parList :: Strategy a -> Strategy [a]
parList s = evalList (rpar `dot` s)



In reality

evalList :: Strategy a -> Strategy [a]
evalList = evalTraversable

parList :: Strategy a -> Strategy [a]
parList = parTraversable



In reality

evalList :: Strategy a -> Strategy [a]
evalList = evalTraversable

parList :: Strategy a -> Strategy [a]
parList = parTraversable

The equivalent of evalList and of parList are available for many
data structures (Traversable).   So defining parX for many X  
is really easy

=>  generic strategies for data-oriented parallelism







parListChunk :: Int -> Strategy a -> Strategy [a]
parListChunk n strat xs
| n <= 1    = parList strat xs
| otherwise
= concat `fmap` parList (evalList strat)(chunk n xs)



parListChunk :: Int -> Strategy a -> Strategy [a]
parListChunk n strat xs
| n <= 1    = parList strat xs
| otherwise
= concat `fmap` parList (evalList strat)(chunk n xs)

chunk :: Int -> [a] -> [[a]]
chunk _ [] = []
Chunk n xs = as : chunk n bs
where
(as,bs) = splitAt n xs



parListChunk :: Int -> Strategy a -> Strategy [a]

. . .

n
parListChunk n strat

evalList strat

. . .



parListChunk :: Int -> Strategy a -> Strategy [a]

SPARKS: 200 (200 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

print $ sum $ runEval $ pMap foo (reverse [1..10000])

Now

print $ sum $ 
(map foo (reverse [1..10000]) `using` parListChunk 50 rdeepseq )

Before



parListChunk :: Int -> Strategy a -> Strategy [a]

SPARKS: 200 (200 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

print $ sum $ runEval $ parMap foo (reverse [1..10000])

Now

print $ sum $ 
(map foo (reverse [1..10000]) `using` parListChunk 50 rdeepseq )

Before

Remember not to be a control freak, though.
Generating plenty of sparks gives the 
runtime the freedom it needs to make good
choices (=> Dynamic partitioning for free)



check k = sum $     
(map foo (reverse [1..10000]) 
`using` 
parListChunk k rdeepseq )

import Criterion.Main

main = defaultMain [bench "L1" (nf check 100)]



$ ./L1 +RTS -N4 -A100M
benchmarking L1
time 510.2 μs (503.5 μs .. 517.3 μs)

0.998 R² (0.997 R² .. 0.999 R²)
mean 512.4 μs (508.1 μs .. 518.3 μs)
std dev 18.19 μs (14.85 μs .. 23.18 μs)
variance introduced by outliers: 28% (moderately inflated)



using is not always what we need

• Trying to pull apart algorithm and 
coordination in qfib (from earlier) doesn’t
really give a satisfactory answer (see Haskell
10 paper)

(If the worst comes to the worst, one can get 
explict control of threads etc. in concurrent
Haskell, but determinism is lost…  )



Divide and conquer

Capturing patterns of parallel computation is a 
major strong point of strategies

D&C is a typical example (see also parBuffer, 
parallel pipelines etc.)

divConq :: (a -> b)
-> a
-> (a -> Bool)
-> (b -> b -> b)
-> (a -> Maybe (a,a))
-> b

function on base cases
input
par threshold reached?
combine
divide
result



Divide and Conquer
divConq f arg threshold conquer divide = go arg
where
go arg =

case divide arg of
Nothing -> f arg
Just (l0,r0) -> conquer l1 r1 ‘using‘ strat
where
l1 = go l0
r1 = go r0
strat x = do r l1; r r1; return x

where r | threshold arg = rseq
| otherwise = rpar

Separates  algorithm and strategy
A first inkling that one can probably do interesting things by programming with

strategies



Skeletons

• encode fixed set of common coordination patterns
and provide efficient parallel implementations (Cole, 
1989)

• Popular in both functional and non-functional
languages. See particularly Eden (Loogen et al, 2005)

A difference: one can / should roll ones own strategies



Strategies: summary

+  elegant redesign by Marlow et al   (Haskell 10)

+  better separation of concerns

+  Laziness is essential for modularity

+   generic strategies for (Traversable) data structures

+   Marlow’s book contain a nice kmeans example. Read it!

- Having to think so much about evaluation order is worrying! 
Laziness is not only good here.  (Cue the Par Monad Lecture!)



Strategies: summary

Algorithm
Evaluation Strategy



Better visualisation



Better visualisation



Better visualisation





Simon Marlow’s landscape for parallel 
HaskellLandscape&

•  Parallel&
–  par/pseq&
–  Strategies&
–  Par&Monad&
–  Repa&
–  Accelerate&
–  DPH&

•  Concurrent&
–  forkIO&
–  MVar&
–  STM&
–  async&
–  Cloud&Haskell&

Haxl?&

1

3
2

4



Course reps??



In the meantime

Read papers and PCPH
Start on Lab A (due 23.59 April 12)
Exercise class tomorrow at 15.15 (EC)

Note office hours of TAs
Markus, tues 10.00-11.00
Max, thu 14.00-15.00

Use them!


