Parallel Functional Programming
Lecture 3

Mary Sheeran

with thanks to Simon Marlow for use of slides
and to Koen Claessen for the guest appearance

http://www.cse.chalmers.se/edu/course/pfp

par and pseq

MUST

Pass an unevaluated computation to par

It must be somewhat expensive

Make sure the result is not needed for a bit

Make sure the result is shared by the rest of the
program

par and pseq

MUST
Pass an unevaluated computatic

O par
It must be somewhat expensive
a bit

t of the

Make sure the result is not neec

Make sure the result is shared k
program

Demands an operational understanding of program execution

Eval monad plus Strategies

Eval monad enables expressing ordering between
instances of par and pseq

Strategies separate algorithm from parallelisation
Provide useful higher level abstractions
But still demand an understanding of laziness

A monad for deterministic parallelism

Simon Marlow Ryan Newton Simon Peyton Jomes
Microsolt Rescarch, Cambeidge, UK Inel, Hadson, MA, LLSA Microsofl Research, Cambridge, UK.
smecnmar@microsoft.com ryan.r.nawton@imal com simonp)@microsoft com
Abstract pum inferface, while allowing a peraiicl impie mentation. We give 2

We prsent a mew modd for delerministic
OTHF I a par. Panctionsllanguage Tie k! b sccadic

explidt gramularity, but allows dymamic constraction of
dagatiow networks that ax scheduled 2t nuntime, while remaining
deterministic and pur. The implementation & based on monadic
conczrenacy, which has until now caly been used 1o simulate con-
curTency in fanctional language s, rather than 10 provide paralie Bsm.
We prsent the APT with its semantics, and argue that peralie] exe-
cuion is delerministic. Purthermon:, 'w‘;:m:mqktut
stealing scheduler mpemented 2 a 1l Bbrary, and we show
that it performs a least as well as the existing pandiel programming
models in Haskell

Haskell’11

formal operational sementcs for the new Inkerface.

Our programming model & closely ®laed 1o a mumber of oth-
ers; 2 detatled can be found in Section & Probebly the
closest mlative is pi (Nikhil 2001), a varant of Haskell that a0
has I-stractumes; the principal diffexnce with owr mode] is that the
momad allows us 10 ®&in relemential . which was lost
In pii with the introduction of I-structures. The Lepet domain of our
programming model is large-grained Eregular paradiclism, rather
than fine-grained mgular data sm (Tor the katier Data Paral-
el u-hnm-yctiwzwm more appeopriai).

Our implementation is based on monadic concwrrency (Schotz
1995), a echnique that has peeviossly been wed 10 pood effect 1o

simulake concurency i 2 sequential functioml kmguage (Clacssen

Builds on Koen’s paper

FUNCTIONAL PEARLS
A Poor Man's Concurrency Monad

Koen Claessen
Chalmers Universiiy of Technology

cmail: koen@cs.chalmers.se

Abstract

Without adding any primitives to the language. we define a concurrency monad trans
former in Haskell. This allows us to add a mited form of concurrency to any existing
monad. lhe atomic actions of the new monad are lifted actions of the underlying monad.
Some extra operations. such as fork. to initiate new processes. are provided. We discuss
the implementation. and use some examples to illustrate the usefulness of this construc
tion.

JFP’99 Call this PMC

the Par Monad

Our goal with this work is to find a parallel programming model
thatis expressive enough to subsume Strategies, robust enough to
reliably express parallelism, and accessible enough that non-expert
programmers can achieve parallelism with little effort.

The Par Monad

Par is a monad for

parallel computation
data Par

instance Monad Par

Parallel computations
are pure (and hence

runPar :: Par a -> a deterministic)

fork :: pPar () -> Par O forking is explicit

4
data Ivar " results are communicated
hew :: Par (Ivar a) through IVars

get :: Ivar a -> Par a
put :: NFData a => Ivar a -> a -> Par ()

Slide by Simon Marlow

I\Var

a write-once mutable reference cell

supports two operations: put and get
putassigns a valuetothe IVar, and may only be
executed once per Ivar

Subsequent putsarean error

get waits until the IVar has been assigned a value, and
then returns the value

the Par Monad

Implemented as a Haskell library
surprisingly little code!
includes a work stealing scheduler
You get to roll your own schedulers!
Programmer has more control than with Strategies
=> |ess error prone?
Good performance (comparable to Strategies)
particularly if granularity is not too small

Par expresses dynamic dataflow

runPar $ do
1 <- new
J <- new
fork (put 1 (fib n))
fork (put j (fib m))
a <- get 1
b <- get j
return (a+b)

spawn :: NFData a => Par a -> Par (IVar a)
spawn p = do

1 <- new

fork (do x <- p; put 1 x)

return 1

parMapM :: NFData b => (a -> Par b) -> [a] -> Par [Db]
parMapM £ as = do

ibs <- mapM (spawn . f) as

mapM get ibs

search :: (partial -> Maybe solution)
-> (partial -> [partial])
-> partial
-> [solution]

See PCPH ch. 4

search :: (partial -> Maybe solution)
-> (partial -> [partial])
-> partial
-> [solution]
search finished refine emptysoln = generate emptysoln
where generate partial
| Just soln <- finished partial = [soln]
| otherwise = concat (map generate (refine partial))

parsearch :: NFData solution
=> (partial -> Maybe solution)
-> (partial -> [partial])
-> partial
-> [solution]
parsearch finished refine emptysoln
= runPar $ generate emptysoln

where

generate partial
| Just soln <- finished partial = return [soln]

| otherwise = do
solnss <- parMapM generate (refine partial)

return (concat solnss)

needs granularity control

parsearch :: NFData solution
=> Int
-> (partial -> Maybe solution) -- finished?
-> (partial -> [partial]) -- refine a solution
-> partial -- initial solution

-> [solution]
parsearch maxdepth finished refine emptysoln
= runPar $ generate 0 emptysoln
where
generate d partial | d >= maxdepth
= return (search finished refine partial)
generate d partial

| Just soln <- finished partial = return [soln]
| otherwise = do

solnss <- parMapM (generate (d+l)) (refine partial)
return (concat solnss)

Dataflow problems

* Par really shines when the problem is easily
expressed as a dataflow graph, particularly an
irregular or dynamic graph (e.g. shape
depends on the program input)

* |dentify the nodes and edges of the graph
— each node is created by fork

— each edge is an IVar

Implementation

e Starting point: A Poor Man’s Concurrency Monad
(Claessen JFP’99)

* PMC was used to simulate concurrency in a
sequential Haskell implementation. We are using
It as a way to implement very lightweight non-
preemptive threads, with a parallel scheduler.

* Following PMC, the implementation is divided
into two:

— Par computations produce a lazy Trace

— A scheduler consumes the Traces, and switches
between multiple threads

Trace

data Trace = forall a . Get (IVar a) (a -> Trace)

| forall a . Put (IVar a) a Trace

| forall a . New (IVarContents a) (IVar a -> Trace)
| Fork Trace Trace

| Done

| Yield Trace

I

forall a . LiftIO (IO a) (a -> Trace)

https://hackage.haskell.org/package/monad-par-0.3.4.8/docs/src/Control-Monad-Par-Scheds-Tracelnternal.html#sched

The Par monad

* Parisa CPS monad:

hewtype Par a = Par {
runcont :: (a -> Trace) -> Trace

}

instance Monad Par where
return a = Par $ \c -> c a
m >>= k Ppar $ \c -> runCont m $
\a -> runcont (k a) c

Operations

fork :: Ppar O -> pPar Q)
fork p = Par $ \c >
Fork (runcont p (_ -> Done)) (c O)

new :: Par (Ivar a)
hew = Par $ \c -> New c

get :: Ivar a -> Par a
get v = Par $ \c -> Get v C

put :: NFData a => Ivar a -> a -> Par ()
put v a = deepseq a (Par $ \c -> Put v a (c 0))

e.g.

* This code:

do

X <- hew
fork (put x 3)

r <- get X
return (r+l1)

* will produce a trace like this:

New (\x ->
Fork (Put x 3 $ Done)

(Get x (\r —>
c (r + 1))))

The scheduler

* First, a sequential scheduler.

The currently running
thread

sched :: schedstate -> Trace -> I0 ()

type Schedstate = [Trace]

Why 10?
Because we’re going
to extend it to be a

The work pool, parallel scheduler in a
“" n
runnable threads moment.

Representation of IVar

newtype IVar a = IVar (IORef (IVarContents a))

Representation of IVar

newtype IVar a = IVar (IORef (IVarContents a))

data IVarContents a = Full a | Empty | Blocked [a -> Trace]

Representation of IVar

newtype IVar a = IVar (IORef (IVarContents a))

data IVarContents a = Full a | Empty | Blocked [a -> Trace]

Set of threads blocked in get

reschedule :: SchedState -> IO ()
reschedule [] = return ()
reschedule (t:ts) = sched ts t

sched state done = reschedule state

sched state (Fork child parent)
= sched (child:state) parent

New and Get

sched state (New f) = do
r <- newIORef (Blocked [])
sched state (f (Ivar r))

sched state (Get (Ivar v) c) = do
e <- readIORef v
case e of
Full a -> sched state (c a)
Blocked cs -> do
writeIoRef v (Blocked (c:cs))
reschedule state

Put

sched state (Put (IVar v) a t) = do
cs <- modifyIORef v $ \e -> case e of
Empty -> (Full a, [])
Full -> error "multiple put”
Blocked ds -> (Full a, ds)
let state’ = map ($ a) cs ++ state
sched state’ t

modifyIORef :: IORef a -> (a -> (a,b)) -> IO b

Put

sched state (Put (IVar v) a t) = do
cs <- modifyIORef v $ \e -> case e of
Empty -> (Full a, [])
Full -> error "multiple put”
Blocked ds -> (Full a, ds)
let state’ = map ($ a) cs ++ state
sched state’ t

Wake up blocked threads

Add them to work pool

modifyIORef :: IORef a -> (a -> (a,b)) -> IO b

Parallel scheduler

One scheduler thread per core, each with a
work pool

S S S S
O O O O

When work pool dries up attempts to steal from
other work pools

S S S S
. O O @

<z 7~

SUCCeSS

When work pool dries up attempts to steal from
other work pools

S S S S

0 @ |°
.

If no work to be found, worker thread becomes
idle (and is added to shared list of idle workers)

A worker thread that creates a new work item
wakes up one of these idle workers

When all work pools are empty, computationis
complete and runPar returns

The code is readable!

sched :: Sched -> Trace -> IO ()
sched queue t = loop t
where

loop t = case t of
New a £ -> do
r <- newIORef a
loop (£ (IVar r))
Get (IVar v) c -> do
e <- readIORef v
case e of
Full a -> loop (c a)
_other -> do
r <- atomicModifyIORef v $ \e -> case e of
Empty -> (Blocked [c], reschedule queue)
Full a -> (Full a, loop (c a))
Blocked cs ->
(Blocked (c:cs), reschedule queue) r

Put (IVar v) a t -> do
cs <- atomicModifyIORef v $ \e -> case e of
Empty -> (Full a, [])
Full -> error "multiple put"”
Blocked cs -> (Full a, cs)
mapM (pushWork queue. ($a)) cs

loop t

-— Cases for Fork, Done, Yield, LiftIO

Put (IVar v) a t -> do
cs <- atomicModifyIORef v $ \e -> case e of
Empty -> (Full a, [])
Full -> error "multiple put"
Blocked cs -> (Full a, cs)
mapM (pushWork queue. ($a)) cs
loop t

-—- Cases for Fork,

If any worker is idle, wake one up
and give it work todo

0,
blackscholes —— 99%
minimax —=«—
mange’

speedup 95%

50%

cores

Modularity

* Key property of Strategies is modularity

parMap f xs = map f xs using parList rwhnf

* Relies on lazy evaluation

— fragile

— not always convenient to build a lazy data structure
* Par takes a different approach to modularity:

— the Par monad is for coordination only

— the application code is written separately as pure
Haskell functions

— The “parallelism guru” writes the coordination code

— Par performance is not critical, as long as the grain
size is not too small

Par monad

Builds on old ideas of dataflow machines (hot
topic in the 70s and 80s, reappearing in
companies like Maxeler)

Express parallelism by expressing data
dependencies or using common patterns (like
parMapM)

Very good match with skeletons!

Large grained, irregular parallelism is target

Par monad compared to Strategies

Separation of function and parallelisation done
differently

Eval monad and Strategies are advisory
Eval monad well integrated with Threadscope

Par monad and Strategies tend to achieve similar
performance

But remember
runPar is expensive and runEval is free!

Par monad compared to Strategies

Par monad does not support speculative parallelism
as Stategies do

Par monad supports stream processing pipelines
well

Strategies appropriate if you are producing a lazy
data structure

Note: Par monad and Strategies can be combined...

Par Monad easier to use than par?

fork creates one parallel task
Dependencies between tasks represented by Ivars
No need to reason about laziness

put is hyperstrict by default

Final suggestion in Par Monad paper is that maybe par
is suitable for automatic parallelisation

From PCPH

Unfortunately, right now there’s no way to
generate a visual representation of the dataflow

graph from some Par monad code, but hopefully
in the future someone will write a tool to do

that.

