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GPUs—why and how



The Situation

Transistors continue to shrink, so we can continue to build
ever more advanced computers.
CPU clock speed stalled around 3GHz in 2005, and
improvements in sequential performance has been slow
since then.
Computers still get faster, but mostly for parallel code.
General-purpose programming now often done on massively
parallel processors, like Graphics Processing Units (GPUs).



GPUs vs CPUs

ALU
ALU

ALU
ALU

Control

Cache
DRAM DRAM

CPU GPU

GPUs have thousands of simple cores and taking full
advantage of their compute power requires tens of thousands
of threads.
GPU threads are very restricted in what they can do: no stack,
no allocation, limited control flow, etc.
Potential very high performance and lower power usage
compared to CPUs, but programming them is hard.

Massively parallel processing is currently a special case, but will
be the common case in the future.



The SIMT Programming Model

GPUs are programmed using the SIMT model (Single
Instruction Multiple Thread).
Similar to SIMD (Single Instruction Multiple Data), but while
SIMD has explicit vectors, we provide sequential scalar
per-thread code in SIMT.

Each thread has its own registers, but they all execute the same
instructions at the same time (i.e. they share their instruction
pointer).



SIMT example

For example, to increment every element in an array a, we might
use this code:

increment(a) {
tid = get_thread_id();
x = a[tid];
a[tid] = x + 1;

}

If a has n elements, we launch n threads, with
get thread id() returning i for thread i.
This is data-parallel programming: applying the same
operation to different data.



Branching

If all threads share an instruction pointer, what about branches?

mapabs(a) {
tid = get_thread_id();
x = a[tid];
if (x < 0) {
a[tid] = -x;

}
}

Masked Execution
Both branches are executed in all threads, but in those threads
where the condition is false, a mask bit is set to treat the
instructions inside the branch as no-ops.
When threads differ on which branch to take, this is called branch
divergence, and can be a performance problem.



Execution Model

A GPU program is called a kernel.
The GPU bundles threads in groups of 32, called warps. These
are the unit of scheduling.
Warps are in turn bundled into workgroups or thread blocks, of
a programmer-defined size not greater than 1024.
Using oversubscription (many more threads that can run
simultaneously) and zero-overhead hardware scheduling, the
GPU can aggressively hide latency.
Following illustrations from
https://www.olcf.ornl.gov/for-users/
system-user-guides/titan/nvidia-k20x-gpus/.
Older K20 chip (2012), but modern architectures are very
similar.

https://www.olcf.ornl.gov/for-users/system-user-guides/titan/nvidia-k20x-gpus/
https://www.olcf.ornl.gov/for-users/system-user-guides/titan/nvidia-k20x-gpus/


GPU layout



SM layout



Warp scheduling



Do GPUs exist in theory as well?

GPU programming is a close fit to the bulk synchronous parallel
paradigm:

Illustration by Aftab A. Chandio; observation by Holger Fröning.



Two Guiding Quotes

When we had no computers, we had no programming
problem either. When we had a few computers, we had a
mild programming problem. Confronted with machines a
million times as powerful, we are faced with a gigantic
programming problem.

—Edsger W. Dijkstra (EWD963, 1986)

The competent programmer is fully aware of the strictly
limited size of his own skull; therefore he approaches the
programming task in full humility, and among other things
he avoids clever tricks like the plague.

—Edsger W. Dijkstra (EWD340, 1972)
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Human brains simply cannot reason about concurrency
on a massive scale

We need a programming model with sequential semantics,
but that can be executed in parallel.
It must be portable, because hardware continues to change.
It must support modular programming.



Sequential Programming for Parallel Machines

One approach: write imperative code like we’ve always done, and
apply a parallelising compiler to try to figure out whether parallel
execution is possible:

for (int i = 0; i < n; i++) {
ys[i] = f(xs[i]);

}

Is this parallel? Yes. But it requires careful inspection of
read/write indices.



Sequential Programming for Parallel Machines

What about this one?

for (int i = 0; i < n; i++) {
ys[i+1] = f(ys[i], xs[i]);

}

Yes, but hard for a compiler to detect.

Many algorithms are innately parallel, but phrased
sequentially when we encode them in current languages.
A parallelising compiler tries to reverse engineer the original
parallelism from a sequential formulation.
Possible in theory, is called heroic effort for a reason.

Why not use a language where we can just say exactly what we
mean?



Functional Programming for Parallel Machines

Common purely functional combinators have sequential semantics,
but permit parallel execution.

for (int i = 0;
i < n;
i++) {

ys[i] = f(xs[i]);
}

∼ let ys = map f xs

for (int i = 0;
i < n;
i++) {

ys[i+1] = f(ys[i], xs[i]);
}

∼ let ys = scan f xs



Existing functional languages are a poor fit

Unfortunately, we cannot simply write a Haskell compiler that
generates GPU code:

GPUs are too restricted (no stack, no allocations inside
kernels, no function pointers).
Lazy evaluation makes parallel execution very hard.
Unstructured/nested parallelism not supported by hardware.
Common programming style is not sufficiently parallel!
For example:

I Linked lists are inherently sequential.
I foldl not necessarily parallel.

Haskell still a good fit for libraries (REPA) or as a
metalanguage (Accelerate, Obsidian).

We need parallel languages that are restricted enough to make a
compiler viable.



The best language is NESL by Guy Blelloch

Good: Sequential semantics; language-based cost model.
Good: Supports irregular arrays-of-arrays such as

[[1], [1,2], [1,2,3]].

Amazing: The flattening transformation can flatten all nested
parallelism (and recursion!) to flat parallelism, while
preserving asymptotic cost!

Amazing: Runs on GPUs! Nested data-parallelism on the GPU by
Lars Berstrom and John Reppy (ICFP 2012).

Bad: Flattening preserves time asymptotics, but can lead
to polynomial space increases.

Worse: The constants are horrible because flattening
inhibits access pattern optimisations.
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The problem with full flattening

Multiplying n×m and m× n matrices:

map (\ xs −> map (\ ys −> l e t zs = map ( ∗ ) xs ys
i n reduce ( + ) 0 zs )

ys s ) xss

Flattens to:

l e t ys s s = r e p l i c a t e n ( t ranspose ys s )
l e t xss s = map ( r e p l i c a t e n ) xss
l e t zs s s = map ( map ( map ( ∗ ) ) ) xs s s ys s s
i n map ( map ( reduce ( + ) 0 ) ) zs s s

Problem: Intermediate arrays of size n× n×m.
We will return to this.

Clearly NESL is still too flexible in some respects. Let’s restrict it
further to make the compiler even more feasible: Futhark!



The philosophy of Futhark
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The philosophy of Futhark

Performance is everything.
Remove anything we cannot compile efficiently: E.g. sum
types, recursion(!), irregular arrays.
Accept a large optimising compiler—but it should spend its
time on optimisation, rather than guessing what the
programmer meant.

Language
simplicity

Compiler
simplicity

Program
performance

Futhark is not a GPU language! It is a hardware-agnostic
language, but our best compiler generates GPU code.



Futhark at a Glance

Small eagerly evaluated pure functional language with
data-parallel constructs. Syntax is a combination of C, SML, and
Haskell.

Data-parallel loops
l e t add two [ n ] ( a : [ n ] i32 ) : [ n ] i32 = map ( + 2 ) a
l e t increment [ n ] [m] ( as : [ n ] [m] i32 ) : [ n ] [m] i32 = map add two as
l e t sum [ n ] ( a : [ n ] i32 ) : i32 = reduce ( + ) 0 a
l e t sumrows [ n ] [m] ( as : [ n ] [m] i32 ) : [ n ] i32 = map sum as

Array construction
i o t a 5 = [ 0 ,1 ,2 ,3 ,4 ]
r e p l i c a t e 3 1337 = [1337 , 1337 , 1337]

—Only regular arrays: [[1,2], [3]] is illegal.
Sequential loops

loop x = 1 f o r i < n do
x ∗ ( i + 1 )



COMPILER OPTIMISATIONS

Oh, look! It changed shape! Did you see that?!
—Miles “Tails” Prower (Sonic Adventure, 1998)



Loop Fusion

Let’s say we wish to first call increment, then sumrows (with
some matrix a):

sumrows (increment a)

A naive compiler would first run increment, producing an
entire matrix in memory, then pass it to sumrows.
This problem is bandwidth-bound, so unnecessary memory
traffic will impact our performance.
Avoiding unnecessary intermediate structures is known as
deforestation, and is a well known technique for functional
compilers.
It is easy to implement for a data-parallel language as loop
fusion.



An Example of a Fusion Rule

The expression
map f (map g a)

is always equivalent to

map (f ◦ g) a

This is an extremely powerful property that is only true in
the absence of side effects.
Fusion is the core optimisation that permits the efficient
decomposition of a data-parallel program.
A full fusion engine has much more awkward-looking rules
(zip/unzip causes lots of bookkeeping), but safety is
guaranteed.



A Fusion Example

sumrows(increment a) = (Initial expression)
map sum (increment a) = (Inline sumrows)

map sum (map (λr → map (+2) r) a) = (Inline increment)
map (sum ◦ (λr → map (+2) r) a) = (Apply map-map fusion)

map (λr → sum (map (+2) r) a) = (Apply composition)

We have avoided the temporary matrix, but the composition
of sum and the map also holds an opportunity for fusion –
specifically, reduce-map fusion.
Will not cover in detail, but a reduce can efficiently apply a
function to each input element before engaging in the actual
reduction operation.
Important to remember: a map going into a reduce is an
efficient pattern.



Handling Nested Parallelism

The problem: Futhark permits nested (regular) parallelism, but
GPUs prefer flat parallel kernels.

Solution: Have the compiler rewrite program to perfectly nested
maps containing sequential code (or known parallel patterns such
as segmented reduction), each of which can become a GPU kernel.

map (\ xs −> l e t y = reduce ( + ) 0 xs
i n map ( + y ) xs )

xss
⇓

l e t ys = map (\ xs −> reduce ( + ) 0 xs ) xss
i n map (\ xs y −> map ( + y ) xs ) xss ys
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Moderate Flattening via Loop Fission

The classic map fusion rule:

map f ◦map g⇒ map (f ◦ g)

We can also apply it backwards to obtain fission:

map (f ◦ g)⇒ map f ◦map g

This, along with other higher-order rules (see PLDI paper), are
applied by the compiler to extract perfect map nests.
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Example: (a) Initial program, we inspect the map-nest.

l e t ( asss , bss ) =
map ( \ ( ps : [m] i32 ) −>

l e t ass = map ( \ ( p : i32 ) : [m] i32 −>
l e t cs = scan ( + ) 0 ( i o t a p )
l e t r = reduce ( + ) 0 cs
i n map ( + r ) ps ) ps

l e t bs = loop ws=ps f o r i < n do
map (\ as w: i32 −>

l e t d = reduce ( + ) 0 as
l e t e = d + w
i n 2 ∗ e ) ass ws

i n ( ass , bs ) ) pss

We assume the type of pss : [m][m]i32.



(b) Distribution.

l e t asss : [m] [m] [m] i32 =
map ( \ ( ps : [m] i32 ) −>

l e t ass = map ( \ ( p : i32 ) : [m] i32 −>
l e t cs = scan ( + ) 0 ( i o t a p )
l e t r = reduce ( + ) 0 cs
i n map ( + r ) ps ) ps

i n ass ) pss
l e t bss : [m] [m] i32 =

map (\ ps ass −>
l e t bs = loop ws=ps f o r i < n do

map (\ as w −>
l e t d = reduce ( + ) 0 as
l e t e = d + w
i n 2 ∗ e ) ass ws

i n bs ) pss ass s



(c) Interchanging outermost map inwards.
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(d) Skipping scalar computation.
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(e) Distributing reduction..
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(e) Distributing reduction.

l e t asss : [m] [m] [m] i32 =
map ( \ ( ps : [m] i32 ) −>

l e t ass = map ( \ ( p : i32 ) : [m] i32 −>
l e t cs = scan ( + ) 0 ( i o t a p )
l e t r = reduce ( + ) 0 cs
i n map ( + r ) ps ) ps

i n ass ) pss
l e t bss : [m] [m] i32 =

loop wss= pss f o r i < n do
l e t dss : [m] [m] i32 =

map (\ ass −>
map (\ as −>

reduce ( + ) 0 as ) ass )
a s s s

i n map (\ws ds −>
l e t ws ’ =

map (\w d −> l e t e = d + w
i n 2 ∗ e ) ws ds

i n ws ’ ) a s s s dss



(f) Distributing inner map.

l e t asss =
map ( \ ( ps : [m] i32 ) −>

l e t ass = map ( \ ( p : i32 ) : [m] i32 −>
l e t cs = scan ( + ) 0 ( i o t a p )
l e t r = reduce ( + ) 0 cs
i n map ( + r ) ps ) ps

i n ass ) pss
l e t bss : [m] [m] i32 = . . .



(f) Distributing inner map.

l e t r s s : [m] [m] i32 =
map ( \ ( ps : [m] i32 ) −>

l e t r s s = map ( \ ( p : i32 ) : i32 −>
l e t cs = scan ( + ) 0 ( i o t a p )
l e t r = reduce ( + ) 0 cs
i n r ) ps

i n r s s ) pss
l e t asss : [m] [m] [m] i32 =

map ( \ ( ps : [m] i32 ) ( r s : [m] i32 ) −>
map ( \ ( r : i32 ) : [m] i32 −>

map ( + r ) ps ) r s
) pss r s s

l e t bss : [m] [m] i32 = . . .



(g) Cannot distribute as it would create irregular array.

l e t r s s : [m] [m] i32 =
map ( \ ( ps : [m] i32 ) −>

l e t r s s = map ( \ ( p : i32 ) : i32 −>
l e t cs = scan ( + ) 0 ( i o t a p )
l e t r = reduce ( + ) 0 cs
i n r ) ps

i n r s s ) pss
l e t asss : [m] [m] [m] i32 = . . .
l e t bss : [m] [m] i32 = . . .

Array cs has type [p]i32, and p is variant to the innermost map
nest.



(h) These statements are sequentialised

l e t r s s : [m] [m] i32 =
map ( \ ( ps : [m] i32 ) −>

l e t r s s = map ( \ ( p : i32 ) : i32 −>
l e t cs = scan ( + ) 0 ( i o t a p )
l e t r = reduce ( + ) 0 cs
i n r ) ps

i n r s s ) pss
l e t asss : [m] [m] [m] i32 = . . .
l e t bss : [m] [m] i32 = . . .

Array cs has type [p]i32, and p is variant to the innermost map
nest.



Result

l e t r s s : [m] [m] i32 = map (\ ps −> map ( . . . ) ps ) pss
l e t asss : [m] [m] [m] i32 =

map (\ ps r s −> map (\ r −> map ( . . . ) ps ) r s ) pss r s s
l e t bss : [m] [m] i32 =

loop wss= pss f o r i < n do
l e t dss : [m] [m] i32 = map (\ ass −> map ( reduce . . . ) ass )

a s s s
i n map (\ws ds −> map ( . . . ) ws ds ) as s s dss

From a single kernel with parallelism m to four kernels of
parallelism m2, m3, m3, and m2.
The last two kernels are executed n times each.



Real world Futhark
programming

Aw, yeah! This is happenin’!
—Sonic the Hedgehog (Sonic Adventure, 1998)



Simple 1D Stencil

l e t smoothen ( ce n t r e s : [ ] f32 ) =
l e t r i g h t s = r o t a t e 1 ce n t r e s
l e t l e f t s = r o t a t e (−1) ce n t r e s
i n map3 (\ l c r −> ( l + c+ r ) / 3 f32 ) l e f t s ce n t r e s r i g h t s

l e t main ( xs : [ ] f32 ) =
i n i t e r a t e 10 smoothen xs
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Making Futhark useful

Sequential CPU
program

Parallel GPU
program

The controlling CPU program does not have to be fast. It can be
generated in a language that is convenient.



Compiling Futhark to Python+PyOpenCL

entry sum_nats (n: i32): i32 =
reduce (+) 0 (1...n)

$ futhark-pyopencl --library sum.fut

This creates a Python module sum.py which we can use as
follows:

$ python
>>> from sum import sum
>>> c = sum ( )
>>> c . sum nats ( 1 0 )
55
>>> c . sum nats (1000000)
1784293664

Good choice for all your integer
summation needs!

Or, we could have our Futhark program return an array containing
pixel colour values, and use Pygame to blit it to the screen...
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So is it fast?

The Question: Is it possible to construct a purely functional
hardware-agnostic programming language that is convenient to
use and provides good parallel performance?
Hard to Prove: Only performance is easy to quantify, and even
then...

No good objective criterion for whether a language is “fast”.
Best practice is to take benchmark programs written in other
languages, port or re-implement them, and see how they
behave.
These benchmarks originally written in low-level CUDA or
OpenCL.
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On the Lab Exercise

Do I need a reason to want to help out a friend?
—Sonic the Werehog (Sonic Unleashed, 2008)



Largest element and its index

l e t argmax [ n ] ( xs : [ n ] i32 ) =
reduce comm ( \ ( x , i ) ( y , j ) −>

i f x < y then ( y , j ) e l s e ( x , i ) )
( i32 . smal les t , −1)
( z i p xs ( i o t a n ) )



Example of scatter

l e t f i l t e r [ n ] ’ a ( p : a −> bool ) ( as : [ n ] a ) : [ ] a =
l e t f l a g s = map p as
l e t o f f s e t s = scan ( + ) 0 ( map i32 . bool f l a g s )
l e t p u t i n i f = i f f then i−1 e l s e −1
l e t i s = map2 p u t i n o f f s e t s f l a g s
i n take ( o f f s e t s [ n−1]) ( s c a t t e r ( copy as ) i s as )

For filter (<0) [1,-1,2,3,-2]:

f l a g s = [ f a l s e , t rue , f a l s e , f a l s e , t r u e ]
o f f s e t s = [ 0 , 1 , 1 , 1 , 2 ]
i s = [ −1, 0 , −1, −1, 1 ]



Visulisation of Ising Model

(If it works...)



Additional Reading

Quickstart guide if you already know functional programming
http://futhark.readthedocs.io/en/
latest/versus-other-languages.html

Basis library documentation
https://futhark-lang.org/docs/
Of particular interest:

/futlib/soac
/futlib/functional
/futlib/array
/futlib/random
/futlib/sobol

http://futhark.readthedocs.io/en/latest/versus-other-languages.html
http://futhark.readthedocs.io/en/latest/versus-other-languages.html
https://futhark-lang.org/docs/

