
Data Parallel
Programming II

Mary Sheeran

Example (as requested)
Associative non-commutative binary operator

Define

a*b = a

a*(b*c) = a*b = a

(a*b) * c = a*c = a

a*b = a
b*a = b

Another example from prefix adders

(gout,pout)=(gin1 +pin1 ⋅gin2 ,pin1 ⋅pin2)

Calculation of carries – Prefix
Graphs
The components usually seen in a prefix graph are the following:

processing component: buffer component:

),(
22 inin pg

() ()
21211

,, inininininoutout ppgpgpg ⋅⋅+=

()
11

, inin pg

()outout pg ,
()outout pg ,

()inin pg ,

()outout pg ,
()outout pg ,

() ()ininoutout pgpg ,, =

Part 1: simple language based performance model

slide from Blelloch’s ICFP10 invited talk

slide from Blelloch’s ICFP10 invited talk

slide from Blelloch’s ICFP10 invited talk

slide from Blelloch’s ICFP10 invited talk

slide from Blelloch’s ICFP10 invited talk

Arrays are purely functional (not mutable)

slide from Blelloch’s ICFP10 invited talk

Blelloch:
programming based cost models could change the way people think about
costs and open door for other kinds of abstract costs
doing it in terms of machines.... "that's so last century"

slide from Blelloch’s ICFP10 invited talk

d

(Typo fixed by MS based on the video)

Brent’s theorem
If a computation can be performed in d steps with w operations on a parallel computer (formally, a
PRAM) with an unbounded number of processors, then the computation can be performed in

d + (w-d)/p steps with p processors

using a greedy scheduler

http://maths-people.anu.edu.au/~brent/pd/rpb022.pdf
943

http://maths-people.anu.edu.au/~brent/pd/rpb022.pdf

Proof

2 0 4 R . P . B R E N T

Let E2 be the expression formed by replacing X2 by an atom in E. Thus I E~ I =
n "t- 1 -- I X2] < (n + 1) /2 < 2 (k-~)/~ + 1, and part (2) of the inductive hypothesis
(applied to E2) gives E = (A2X2 -4- B~)/(C~X2 -4- D2), where A~, B2, C2, and D~ can
be evaluated simultaneously in time k - 4 with P2(I E2 I) processors and Q2(I E~ t)
operations.

Similarly, L~ = (Asx + Bs)/(C3x "4- D~), where A~, Bs, C3, and D8 can be evaluated
in time k - 4 with P2(I L2 1) processors and Q2(I L2 t) operations. Also, since I R21 <_
n - 1, part (1) of the inductive hypothesis shows that R~ = F4/G4, where F4 and G4 can
be evaluated in time k -- 2 with P~ (I R2 [) processors and Q1 ([R2 l) operations.

From X2 -- L282R~ and the above expressions for E, L2, and R2, we find that E =
(Ax "4- B) / (Cx + D) , where

{(A~C3)F4 + (A2A3 + B2Ca)G4 if 02 = " + " ,
A = ~(A2A3)F4-4- (B2C3)G4 ' if 02 = "*",

((A~A3)G4 + (B~C3)F4 if 02 = " / " ,

and B, C, and D are given by similar expressions. Thus A, B, C, and D can be evaluated
in time k.

The number of processors required to compute A, • • • , D simultaneously in time k is
at :most
max [P2(] E~ I) "4- P2([L2]) + P~(I R2 I), 8 "4- P~([R2 {)]

= max [3(] E2I + I L ~ I - 4 -] R 2 I) - 11, 3 (t L ~ I - 4 -] R 2 I) - 7 ,
3(IE2 I -4 - IR~I) - 7 , 3 IR~I + 51.

Since [E~ [-4-IL~[+ IR~I = n + 1, [n2 ["4- IRE[< n, IE21 -4-IR~I _< n,
and n > 1, the number of processors required is at most 3n - 4 = P~(n) provided
31R~l + 5 _< 3 n - 4, i.e. provided [R~[< n - 3. I f [R ~ [= n - 2 o r n - 1, the
expressions for A, B, C, and D simplify, and a straightforward examination of cases
shows that P~ (n) processors suffice.

Similarly, if I E~ I > 2 and I L~ I > 2, the number of operations required is at most
28 + q2([E~ I) + Q2([L2 [) + Q~([R2 [) _< 10n - 30 < q2(n). I f [E~ I -< 2 or[L~ [< 2
or both, the expressions for A, B, C, and D simplify, and Q~ (n) operations suffice. This
completes the proof of part (2), so the theorem follows by induction on N.

4. Consequences of Theorem 1

We need the following lemma, which is of some independent interest.
LEMMA 2. ~ff a computation C can be performed in time t with q operations and suffi-

cie.ntly many processors which perform arithmetic operations in unit time, then C can be"
performed in time t -4- (q -- t) /p with p such processors.

PROOF. Suppose that st operations are performed at step i, for i = 1, 2, • • • , t. Thus
~t Z,~-x s~ = q. Using p processors, we can simulate step i in time Fsdp'3 • Hence, the

computation C can be performed with p processors in time

~ - 1 [-s,/p-1 _< (1 -- 1/p) t -4- (l /p) ~ = 1 s, = t -4- (q -- t) /p .

COROLLARY 1. Let E be as in Theorem I and suppose that p processors which can perform
addition, multiplication, and division in unit time are available. Then E can be evaluated in
time 4 log2n + 10(n -- 1)/p.

PROOF. Suppose that n _> 3, for otherwise the result is trivial. By Theorem 1,
E = F/G, where F and G can be evaluated in time [-4 log2 (n -- 1)7 -- 2 < 4 log2n -- 1
with less than I0 (n - 1) operations. Applying Lemma 2 with t = r 4 log2 (n - 1)'3 -- 2
and q = 1 0 (n - 1), we see that F and G can be evaluated in time 4 1 o g 2 n - 1 +
10 (n -- 1) /p with p processors. Finally, E = F/G can be evaluated in one more unit of
time. (Note that only one division is performed, so the result is easily modified if a divi-
sion takes longer than an addition or multiplication.)

from the aforementioned paper

Why?

si number of operations at time i

Time for si on p processors

⎡si / p ⎤ ≤ si + p – 1
p

Overall time

≤

⎡si / p ⎤

∑
i=1

d

si + p – 1

p

∑
i=1

d

= ∑
i=1

d

p
p + ∑

i=1

d

si – 1
p

= d +
∑si
i=1

d

- ∑1
i=1

d

p

= d +
∑si
i=1

d

- ∑1
i=1

d

p

= d +
w - d

p

Now have both lower and upper
bound on running time for p
processors

Tp≤ ≤ d +max(w/p, d) w - d
p

Now have both lower and upper
bound on running time for p
processors

Tp≤ ≤ T∞ +max(T1/p, T∞) T1 - T∞
p

Now have both lower and upper
bound on running time for p
processors

Tp≤ ≤ T∞ +max(T1/p, T∞) T1 - T∞
p

< T∞ +
T1
p

Now have both lower and upper
bound on running time for p
processors

Tp≤ ≤ T∞ +max(T1/p, T∞) T1 - T∞
p

<
T∞ +

T1
pThis

is no more than twice
as big as
that

So a greedy scheduler does pretty close to the best possible

So a greedy scheduler does pretty close to the best possible

Though note that no real scheduler is perfect
will cause delays between task becoming ready and starting
(sometimes called scheduler friction)

can also cause memory effects. Movement of computations can
cause additional data movement

Ideal scheduler => Rough but useful estimate

slide from Blelloch’s ICFP10 invited talk

d

(Typo fixed by MS based on the video)

The log p is related to load balancing
cost

degree of parallelism

T1

T∞

An idea of how many processors we can usefully use

w
d

Why?

Tp
w
p + d<

w
p += w

w/d

= w
p (1 +

p
w/d)

Why?

Tp
w
p + d<

w
p += w

w/d

= w
p (1 +

p
w/d)

If p << degree of parallelism
(w/d) then we get near perfect

speedup

Work efficiency

Parallel algorithm is work efficient if it has work
that is asymptotically the same as that of the optimal
sequential algorithm

Aim first for low work
Then try to lower depth (span)

Back to our scan

oblivious or data independent computation

N = 2n inputs, work of dot is 1
work = ?
depth = ?

Another scan (Sklansky)

For N inputs Depth log N

What about work??

Quicksort

function Quicksort(A) = if (#A < 2) then A else
let pivot = A[#A/2];

lesser = {e in A| e < pivot};
equal = {e in A| e == pivot};
greater = {e in A| e > pivot};
result = {quicksort(v): v in [lesser,greater]};

in result[0] ++ equal ++ result[1];

Analysis in ICFP10 video gives depth = O(log N) work = O(N logN)

Quicksort

function Quicksort(A) = if (#A < 2) then A else
let pivot = A[#A/2];

lesser = {e in A| e < pivot};
equal = {e in A| e == pivot};
greater = {e in A| e > pivot};
result = {quicksort(v): v in [lesser,greater]};

in result[0] ++ equal ++ result[1];

Analysis in ICFP10 video gives depth = O(log N) work = O(N logN)

(The depth is improved over the example with trees, due to the addition of
parallel arrays as primitive.)

From the NESL quick reference

Basic Sequence Functions
Basic Operations Description Work Depth
#a Length of a O(1) O(1)
a[i] ith element of a O(1) O(1)
dist(a,n) Create sequence of length n with a in each element. O(n) O(1)
zip(a,b) Elementwise zip two sequences together into a sequence of pairs. O(n) O(1)
[s:e] Create sequence of integers from s to e (not inclusive of e) O(e-s) O(1)
[s:e:d] Same as [s:e] but with a stride d. O((e-s)/d) O(1)

Scans
plus_scan(a) Execute a scan on a using the + operator O(n) O(log n)
min_scan(a) Execute a scan on a using the minimum operator O(n) O(log n)
max_scan(a) Execute a scan on a using the maximum operator O(n) O(log n)
or_scan(a) Execute a scan on a using the or operator O(n) O(log n)
and_scan(a) Execute a scan on a using the and operator O(n) O(log n)

See the DIKU NESL interpreter!

33

Lesson 1: Sequential Semantics

• Debugging is much easier without non-
determinism
• Analyzing correctness is much easier without

non-determinism
• If it works on one implementation, it works on all

implementations
• Some problems are inherently concurrent—these

aspects should be separated

Slide borrowed from Blelloch’s retrospective talk on NESL.
glew.org/damp2006/Nesl.ppt

34

Lesson 2: Cost Semantics

• Need a way to analyze cost, at least
approximately, without knowing details of the
implementation
• Any cost model based on processors is not going

to be portable – too many different kinds of
parallelism

Slide borrowed from Blelloch’s retrospective talk on NESL.
glew.org/damp2006/Nesl.ppt

35

Lesson 3: Too Much Parallelism

Needed ways to back out of parallelism
• Memory problem
• The “flattening” compiler technique was too

aggressive on its own
• Need for Depth First Schedules or other

scheduling techiques
• Various bounds shown on memory usage

Slide borrowed from Blelloch’s retrospective talk on NESL.
glew.org/damp2006/Nesl.ppt

NESL : what more should be done?

Take account of LOCALITY of data and
account for communication costs
(Blelloch has been working on this.)

Deal with exceptions and randomness

Reduce amount of parallelism where appropriate
(see Futhark lecture)

NESL also influenced
The Java 8 streams that you will see on Monday next week

Intel Array Building Blocks (ArBB)
That has been retired, but ideas are reappearing as C/C++ extensions

Futhark, which you will see on Thursday next week

Collections seem to encourage a functional style even in non
functional languages

(remember Backus’ paper from first lecture)

Flat

Nested

Amorphous

RepaAccelerate

Data Parallel

Haskell

Embedded
(2nd class)

Full
(1st class)

Slide borrowed from lecture by G. Keller

Data Parallel Haskell (DPH)
intentions

NESL was a seminal breakthrough but, fifteen years later it remains largely un-
exploited.Our goal is to adopt the key insights of NESL, embody them in a modern,
widely-used functional programming language, namely Haskell, and implement them
in a state-of-the-art Haskell compiler (GHC). The resulting system, Data Parallel
Haskell, will make nested data parallelism available to real users.

Doing so is not straightforward. NESL a first-order language, has very few data types,
was focused entirely on nested data parallelism, and its implementation is an
interpreter. Haskell is a higher-order language with an extremely rich type system; it
already includes several other sorts of parallel execution; and its implementation is a
compiler.

http://www.cse.unsw.edu.au/~chak/papers/fsttcs2008.pdf

http://www.cse.unsw.edu.au/~chak/papers/fsttcs2008.pdf

DPH

Parallel arrays [: e :] (which can contain arrays)

DPH

Parallel arrays [: e :] (which can contain arrays)

Expressing parallelism = applying collective operations to parallel arrays

Note: demand for any element in a parallel array results in eval of all elements

DPH array operations

(!:) :: [:a:] -> Int -> a
sliceP :: [:a:] -> (Int,Int) -> [:a:]
replicateP :: Int -> a -> [:a:]
mapP :: (a->b) -> [:a:] -> [:b:]
zipP :: [:a:] -> [:b:] -> [:(a,b):]
zipWithP :: (a->b->c) -> [:a:] -> [:b:] -> [:c:]
filterP :: (a->Bool) -> [:a:] -> [:a:]
concatP :: [:[:a:]:] -> [:a:]
concatMapP :: (a -> [:b:]) -> [:a:] -> [:b:]
unconcatP :: [:[:a:]:] -> [:b:] -> [:[:b:]:]
transposeP :: [:[:a:]:] -> [:[:a:]:]
expandP :: [:[:a:]:] -> [:b:] -> [:b:]
combineP :: [:Bool:] -> [:a:] -> [:a:] -> [:a:]
splitP :: [:Bool:] -> [:a:] -> ([:a:], [:a:])

Examples

svMul :: [:(Int,Float):] -> [:Float:] -> Float
svMul sv v = sumP [: f*(v !: i) | (i,f) <- sv :]

smMul :: [:[:(Int,Float):]:] -> [:Float:] -> [:Float:]
smMul sm v = [: svMul row v | row <- sm :]

Nested data parallelism
Parallel op (svMul) on each row

Data parallelism
Perform same computation on a collection of differing data values

examples: HPF (High Performance Fortran)
CUDA

Both support only flat data parallelism

Flat : each of the individual computations on (array) elements is
sequential

those computations don’t need to communicate
parallel computations don’t spark further parallel computations

API for purely functional, collective operations over dense,
rectangular, multi-dimensional arrays supporting shape
polymorphism

ICFP 2010

Ideas
Purely functional array interface using collective (whole array)

operations like map, fold and permutations can
• combine efficiency and clarity
• focus attention on structure of algorithm, away from low level details

Influenced by work on algorithmic skeletons based on Bird
Meertens formalism (look for PRG-56)

Provides shape polymorphism not in a standalone specialist
compiler like SAC, but using the Haskell type system

Ideas
Purely functional array interface using collective (whole array)

operations like map, fold and permutations can
• combine efficiency and clarity
• focus attention on structure of algorithm, away from low level details

Influenced by work on algorithmic skeletons based on Bird
Meertens formalism (look for PRG-56)

Provides shape polymorphism not in a standalone specialist
compiler like SAC, but using the Haskell type system

And you will have a lecture on Single
Assignment C later in the course

terminology

Regular arrays
dense, rectangular, most elements non-zero

shape polymorphic
functions work over arrays of arbitrary dimension

terminology

Regular arrays
dense, rectangular, most elements non-zero

shape polymorphic
functions work over arrays of arbitrary dimension

note: the arrays are purely
functional and immutable

All elements of an array are
demanded at once -> parallelism

P processing elements, n array
elements => n/P consecutive

elements on each proc. element

Delayed (or pull) arrays great
idea!
Represent array as function from index to value

Not a new idea
Originated in Pan in the functional world I think

See also
Compiling Embedded Langauges

http://conal.net/Pan/
http://conal.net/papers/jfp-saig/compile-dsel.pdf

But this is 100* slower than
expected
doubleZip :: Array DIM2 Int -> Array DIM2 Int

-> Array DIM2 Int
doubleZip arr1 arr2
= map (* 2) $ zipWith (+) arr1 arr2

Fast but cluttered
doubleZip arr1@(Manifest !_ !_) arr2@(Manifest !_ !_)
= force $ map (* 2) $ zipWith (+) arr1 arr2

Things moved on!

Repa from ICFP 2010 had ONE type of array (that could be
either delayed or manifest, like in many EDSLs)

A paper from Haskell’11 showed efficient parallel stencil
convolution

http://www.cse.unsw.edu.au/~keller/Papers/stencil.pdf

http://www.cse.unsw.edu.au/~keller/Papers/stencil.pdf

Repa’s real strength

Stencil computations!

0 1 0

1 0 1

0 1 0

Figure 2: A simple example stencil.

makeStencil2 (Z :. 3 :. 3)

(\ix -> case ix of

Z :. -1 :. 0 -> Just 1

Z :. 0 :. -1 -> Just 1

Z :. 0 :. 1 -> Just 1

Z :. 1 :. 0 -> Just 1

_ -> Nothing)

Figure 3: A lambda modelling the simple stencil in figure 2.

We see that Repa provides the function makeStencil2, for specifying a 2-
dimensional stencil of a given dimension, here 3 by 3. Since this tutorial focuses
on image manipulation, we will only concern ourselves with the special case of
2-dimensional stencils.

This way of making stencils from lambdas is however somewhat cumbersome.
It is not immediately apparent from looking at the lambda in 3 that it actually
represents the stencil in figure 2. To remedy this, Repa provides us with the
convenience method stencil2, which allows us to specify stencils like in figure
4.

[stencil2| 0 1 0

1 0 1

0 1 0 |]

Figure 4: A stencil defined using the QuasiQuotes language extension.

If this syntax looks foreign, do not fret. Just know that it exploits a language
extension called QuasiQuotes, and that by putting the pragma:

{-# LANGUAGE QuasiQuotes #-}

at the top of your source file, the code in figure 4 will be preprocessed and
converted into the code in figure 3 during compile time.

3.2.2 Applying stencils

So now that we know how to specify stencils, it only remains to apply them
to something. Let us keep working with our simple stencil from the previous
section, and see what happens when we apply it to an actual image.

Repa allows us to read bitmaps into arrays using the readImageFromBMP func-
tion, which reads a bitmap from a relative file path and produces a two-dimensional

6

array of Word8 triples. Each of these triples represents a pixel in the source im-
age, and the individual words in these triples represent the red, green and blue
components of the pixel.

Figure 5: Example image.

To read in the image in figure 5, the following code is su�cient:

do

arrImage <- liftM (either (error . show) id) $

readImageFromBMP "image.bmp"

This gives us an array of Word8 triples. We use the run function for the Either
monad to handle the case when reading the image results in an error.

makeStencil2 :: Num a =>

Int -> Int ->

(DIM2 -> Maybe a) ->

Stencil DIM2 a

mapStencil2 :: Source r a =>

Boundary a ->

Stencil DIM2 a ->

Array r DIM2 a ->

Array PC5 DIM2 a

If we look at the types of makeStencil2 and the corresponding mapStencil2, we
see that the type of the array we map our stencil over must contain elemnts of
the same type as we specified in our stencil. We also see that mapping a stencil
requires specifying what happens in the boundaries of the array. In our case,
it is su�cient to use (BoundConst 0), which means that we pretend that there
are zeroes everywhere outside the boundaries of our array.

To make our integer stencil work for arrays of Word8:s, we will unzip the array
of triples into three separate arrays of numbers. After acquiring three separate
arrays containing the red, blue and green components, we will map our stencil
on these arrays separately as such:

do

(r, g, b) <- liftM (either (error . show) R.unzip3) readImageFromBMP "in.bmp"

[r’, g’, b’] <- mapM (applyStencil simpleStencil) [r, g, b]

writeImageToBMP "out.bmp" (U.zip3 r’ g’ b’)

After acquiring our transformed component arrays, we promptly zip them back

7

Repa’s real strength

array of Word8 triples. Each of these triples represents a pixel in the source im-
age, and the individual words in these triples represent the red, green and blue
components of the pixel.

Figure 5: Example image.

To read in the image in figure 5, the following code is su�cient:

do

arrImage <- liftM (either (error . show) id) $

readImageFromBMP "image.bmp"

This gives us an array of Word8 triples. We use the run function for the Either
monad to handle the case when reading the image results in an error.

makeStencil2 :: Num a =>

Int -> Int ->

(DIM2 -> Maybe a) ->

Stencil DIM2 a

mapStencil2 :: Source r a =>

Boundary a ->

Stencil DIM2 a ->

Array r DIM2 a ->

Array PC5 DIM2 a

If we look at the types of makeStencil2 and the corresponding mapStencil2, we
see that the type of the array we map our stencil over must contain elemnts of
the same type as we specified in our stencil. We also see that mapping a stencil
requires specifying what happens in the boundaries of the array. In our case,
it is su�cient to use (BoundConst 0), which means that we pretend that there
are zeroes everywhere outside the boundaries of our array.

To make our integer stencil work for arrays of Word8:s, we will unzip the array
of triples into three separate arrays of numbers. After acquiring three separate
arrays containing the red, blue and green components, we will map our stencil
on these arrays separately as such:

do

(r, g, b) <- liftM (either (error . show) R.unzip3) readImageFromBMP "in.bmp"

[r’, g’, b’] <- mapM (applyStencil simpleStencil) [r, g, b]

writeImageToBMP "out.bmp" (U.zip3 r’ g’ b’)

After acquiring our transformed component arrays, we promptly zip them back

7

into an image and write it to a bitmap using the Repa provided writeImageToBMP,
resulting in the image in figure 6.

Figure 6: The stencil in figure 2 applied to the image in figure 5.

Our filter from the stencil in figure 2 has successfully spiced up the colors of our
example image.

Let us now look at a couple of example stencils that actually result in something
useful.

3.3 Some examples

Now that we know how to handle stencil convolution in Repa, let’s try it out
on a couple of real examples.

We are going to experiment with two fundamental image filters and their cor-
responding stencils, Gaussian blur and simple edge detection.

In order to easily experiment with di↵erent filters and stencils, let us use the
primitives provided by Repa to define a couple of useful combinators.

First o↵, we represent our images as 2-dimensional arrays of numerals. However,
the Word8 type in which images are represented when read from files does not
lend itself very well to non-integer arithmetic, so let us define images as arrays
of floating point numbers, and a way to easily switch between representations.

Converting between di↵erent numeric representations in Haskell can be a real
pain, but fortunately the authors of Repa have provided us with a way of doing
it in their example files:

type Image = Array U DIM2 Double

promote :: Array U DIM2 Word8 -> IO (Image)

promote = computeP . R.map ffs

where

ffs :: Word8 -> Double

ffs x = fromIntegral (fromIntegral x :: Int)

demote :: Image -> IO (Array U DIM2 Word8)

demote = computeP . R.map ffs

where

ffs :: Double -> Word8

8

http://www.cse.chalmers.se/edu/year/2015/course/DAT280_Parallel_Fu
nctional_Programming/Papers/RepaTutorial13.pdf

Fancier array type (Repa 2)

Fancier array type

But you need to be a guru to get good performance!

Put Array representation into the
type!

Repa 3 (Haskell’12)

http://www.youtube.com/watch?v=YmZtP11mBho

quote on previous slide was from this paper

http://www.youtube.com/watch?v=YmZtP11mBho

Repa info

http://repa.ouroborus.net/

http://repa.ouroborus.net/

Repa arrays are wrappers around a linear structure that holds the element data.

The representation tag determines what structure holds the data.

Delayed Representations (functions that compute elements)
D -- Functions from indices to elements.
C -- Cursor functions.

Manifest Representations (real data)
U -- Adaptive unboxed vectors.
V -- Boxed vectors.
B -- Strict ByteStrings.
F -- Foreign memory buffers.

Meta Representations
P -- Arrays that are partitioned into several representations.
S -- Hints that computing this array is a small amount of work, so computation should be sequential rather than

parallel to avoid scheduling overheads.
I -- Hints that computing this array will be an unbalanced workload, so computation of successive elements should be

interleaved between the processors
X -- Arrays whose elements are all undefined.

Repa Arrays

10 Array representations!

10 Array representations!

http://www.youtube.com/watch?v=YmZtP11mBho

But the 18 minute presentation at Haskell’12 makes it all make sense!!
Watch it!

http://www.youtube.com/watch?v=YmZtP11mBho

Fusion

Delayed (and cursored) arrays enable fusion that
avoids intermediate arrays

User-defined worker functions can be fused

This is what gives tight loops in the final code

Example: sorting

Batcher’s bitonic sort
(see lecture from last week)

“hardware-like” data-independent

http://www.cs.kent.edu/~batcher/sort.pdf

http://www.cs.kent.edu/~batcher/sort.pdf

bitonic sequence

inc (not decreasing)
then

dec (not increasing)

or a cyclic shift of such a sequence

1 2 3 4 5 6 7 8 9 10 8 6 4 2 1 0

1 2 3 4 5 6 7 8 9 10 8 6 4 2 1 0

1 9

1 2 3 4 5 6 7 8 9 10 8 6 4 2 1 0

1 2 9 10

1 2 3 4 5 6 7 8 9 10 8 6 4 2 1 0

1 2 3 4 9 10 8 6

1 2 3 4 5 6 7 8 9 10 8 6 4 2 1 0

1 2 3 4 4 9 10 8 6 5

Swap!

1 2 3 4 5 6 7 8 9 10 8 6 4 2 1 0

1 2 3 4 4 2 9 10 8 6 5 6

1 2 3 4 5 6 7 8 9 10 8 6 4 2 1 0

1 2 3 4 4 2 1 0 9 10 8 6 5 6 7 8

1 2 3 4 5 6 7 8 9 10 8 6 4 2 1 0

1 2 3 4 4 2 1 0 9 10 8 6 5 6 7 8

bitonic bitonic≤

Butterfly

bitonic

Butterfly

bitonic
bitonic

bitonic
>=

bitonic merger

Question

What are the work and depth (or span) of bitonic
merger?

Making a recursive sorter (D&C)

Make a bitonic sequence using two
half-size sorters

Batcher’s sorter (bitonic)

S

S
r
e
v
e
r
s
e

M

Let’s try to write this sorter down in
Repa

bitonic merger

bitonic merger

whole array operation

dee for diamond

dee :: (Shape sh, Monad m) => (Int -> Int -> Int) -> (Int -> Int -> Int)
-> Int
-> Array U (sh :. Int) Int
-> m (Array U (sh :. Int) Int)

dee f g s arr = let sh = extent arr in computeUnboxedP $ fromFunction sh ixf
where
ixf (sh :. i) = if (testBit i s) then (g a b) else (f a b)
where
a = arr ! (sh :. i)
b = arr ! (sh :. (i `xor` s2))
s2 = (1::Int) `shiftL` s

assume input array has length a power of 2, s > 0 in this and
later functions

dee for diamond

dee :: (Shape sh, Monad m) => (Int -> Int -> Int) -> (Int -> Int -> Int)
-> Int
-> Array U (sh :. Int) Int
-> m (Array U (sh :. Int) Int)

dee f g s arr = let sh = extent arr in computeUnboxedP $ fromFunction sh ixf
where
ixf (sh :. i) = if (testBit i s) then (g a b) else (f a b)
where
a = arr ! (sh :. i)
b = arr ! (sh :. (i `xor` s2))
s2 = (1::Int) `shiftL` s

dee f g 3 gives index i matched with index (i xor 8)

bitonicMerge n = compose [dee min max (n-i) | i <- [1..n]]

tmerge

vee
vee :: (Shape sh, Monad m) => (Int -> Int -> Int) -> (Int -> Int -> Int)

-> Int
-> Array U (sh :. Int) Int
-> m (Array U (sh :. Int) Int)

vee f g s arr = let sh = extent arr in computeUnboxedP $ fromFunction sh ixf
where
ixf (sh :. ix) = if (testBit ix s) then (g a b) else (f a b)
where
a = arr ! (sh :. ix)
b = arr ! (sh :. newix)
newix = flipLSBsTo s ix

vee
vee :: (Shape sh, Monad m) => (Int -> Int -> Int) -> (Int -> Int -> Int)

-> Int
-> Array U (sh :. Int) Int
-> m (Array U (sh :. Int) Int)

vee f g s arr = let sh = extent arr in computeUnboxedP $ fromFunction sh ixf
where
ixf (sh :. ix) = if (testBit ix s) then (g a b) else (f a b)
where
a = arr ! (sh :. ix)
b = arr ! (sh :. newix)
newix = flipLSBsTo s ix

vee f g 3 out(0) -> f a(0) a(7)
out(7) -> g a(7) a(0)
out(1) -> f a(1) a(6)
out(6) -> g a(6) a(1)

tmerge

tmerge n = compose $ vee min max (n-1) : [dee min max (n-i) | i <- [2..n]]

Obsidian

tsort n = compose [tmerge i | i <- [1..n]]

Question

What are work and depth of this sorter??

Performance is decent!

Initial benchmarking for 2^20 Ints

Around 800ms on 4 cores on my previous laptop

Compares to around 1.6 seconds for Data.List.sort (which is seqential)

Still slower than Persson’s non-entry from the sorting competition in the 2012 course
(which was at 400ms) -- a factor of a bit under 2

Comments
Should be very scalable

Can probably be sped up! Need to add sequentialness J

Similar approach might greatly speed up the FFT in repa-examples
(and I found a guy running an FFT in Haskell competition)

Note that this approach turned a nested algorithm into a flat one

Idiomatic Repa (written by experts) is about 3 times slower.
Genericity costs here!

Message: map, fold and scan are not enough. We need to think more
about higher order functions on arrays (e.g. with binary operators)

Nice success story at NYT

Haskell in the Newsroom

Haskell in Industry

https://www.infoq.com/presentations/haskell-newsroom-nyt
https://wiki.haskell.org/Haskell_in_industry

stackoverflow

is your friend

See for example

http://stackoverflow.com/questions/14082158/idiomatic-option-pricing-and-risk-
using-repa-parallel-arrays?rq=1

http://stackoverflow.com/questions/14082158/idiomatic-option-pricing-and-risk-using-repa-parallel-arrays?rq=1

Conclusions (Repa)

Based on DPH technology

Good speedups!

Neat programs

Good control of Parallelism

BUT CACHE AWARENESS needs to be tackled

Conclusions

Development seems to be happening in Accelerate,
which now works for both
multicore and GPU (work ongoing)

Array representations for parallel functional
programming is an important, fun and frustrating
research topic J

par and pseq

Strategies

Par monad

Repa

(Accelerate)

(Obsidian)

Futhark

SAC

Haxl

NESL

Questions to think about

What is the right set of whole array operations?

(remember Backus from the first lecture)

A big question (at least for me)

How much should one put in the types?

More research needed

Combinators for parallel programming (influenced by Skeletons perhaps?)

Support for benchmarking, granularity control

Support for chunking (for example much needed in the Par monad)

Expressing locality Dealing with cache hierarchies

Need better ways to reinvent and assess parallel (functional) algorithms
(I find this paper about parallelising an important algorithm in visualisation very inspiring)

https://www.researchgate.net/publication/282975362_Flying_Edges_A_High-Performance_Scalable_Isocontouring_Algorithm

Oh and we are looking for doctoral students to
work on secure programming of IoT!!

Octopi Job ad

https://www.chalmers.se/en/about-chalmers/Working-at-Chalmers/Vacancies/Pages/default.aspx

