Data Parallel
Programming ||

Mary Sheeran




Example (as requested)

Associative non-commutative binary operator

Define
a*b=a
a*(b*c) = a*b=a
(a*b) *c =a*c=a

a*b=a
b*a=Db



Another example from prefix adders

(g iny 9 pin1 )
(&, Pin,)

e

(gout 3 pout )
(gout 2 pout )

(gout,pout) — (ginl +pin1 'ginz ,pim 'pinz )



Part 1: simple language based performance model

Call-by-value A-calculus

Jx.e | Ax.e (LAM)

e Axce e, v elv/xllV

e e, v

(APP)

slide from Blelloch’s ICFP10 invited talk



The Parallel A-calculus: cost model
el viw,d

Reads: expression e evaluates to v with work w
and span d.

* Work (W): sequential work

* Span (D): parallel depth

slide from Blelloch’s ICFP10 invited talk



The Parallel A-calculus: cost model

Jx.e | Ax. e;

e, | Ax. e;-@ e, | v;-@ elv/x]| v';-,d3
(APP)
e e, | v, _ 1+max(d,.d,) +d,

(LAM)

Work adds
Span adds sequentially,
and max in parallel

slide from Blelloch’s ICFP10 invited talk



Adding Functional Arrays: NESL

{e,:xme, | e}

e, /x1v';w.d 1€{l...n}
{e"“xmv,..v,1} [ .. v, l+2’,’-=lwi, 1+111ax|,-"=|1d,.

Primitives:

<- : ‘a seq * (int,’a) seq -> ‘a seq

¢ [g,C,a,p] <- [(Old)l(zlf)l(oll)]
[i,¢,£,p]

elt, index, length [ICFP95]

slide from Blelloch’s ICFP10 invited talk



Adding Functional Arrays: NESL
{e, :3

e'[v;/x] | v, w,.d, Arrays are purely functional (not mutable)

{e"xmv..v1}{[..v,']

Primitives:

<- : ‘'a seqg * (int,’a) seq -> ‘a seq
¢ [glclalp] <- [(Old)l(zlf)l(oll)]
[ilclflp]

[ICFP95]

elt, index, length

slide from Blelloch’s ICFP10 invited talk



Adding Functional Arrays: NESL

{e,:xme, | e}

Blelloch:

programming based cost models could change the way people think about
costs and open door for other kinds of abstract costs

doing it in terms of machines.... "that's so last century"

<- : ‘a seq * (int,’a) seq -> ‘a seq
¢ [grc/arp] <- [(0,d),(2,f),(0,1)]
[i,c,f,p]

elt, index, length [ICFP95]

slide from Blelloch’s ICFP10 invited talk



The Second Half:
Provable Implementation Bounds

Theorem [FPCA95]:If e | v: w.d then v can be
calculated from e on a CREW PRAM with p

processors in o[—+dloop time.

Can’t really do better than: lnax{(%,d]
If w/p >d log p then “work dominates”

We refer to w/p as the parallelism.

(Typo fixed by MS based on the video)

slide from Blelloch’s ICFP10 invited talk



Brent’s theorem

If a computation can be performed in d steps with w operations on a parallel computer (formally, a
PRAM) with an unbounded number of processors, then the computation can be performed in

d + (w-d)/p steps with p processors

using a greedy scheduler

http://maths-people.anu.edu.au/~brent/pd/rpb022.pdf @



http://maths-people.anu.edu.au/~brent/pd/rpb022.pdf

Proof

Proor. Suppose that s; operations are performed at step ¢, forz = 1, 2, --- , ¢. Thus
D ias = ¢. Using p processors, we can simulate step ¢ in time [[s;/p7 . Hence, the
computation C can be performed with p processors in time

DiaTs/p1 <A = 1Upht+ A/p) D iasi=t+ (g —1t)/p.

from the aforementioned paper



Why?

S, number of operations at time |

Time for s,on p processors

[si/p_‘ < s+p—1
P




Overall time

Z [Si/pw
< i ss+p—1










Now have both lower and upper
oound on running time for p
Orocessors

max(w/p, d) < T w-d

IN

d+




Now have both lower and upper
oound on running time for p
Orocessors

max(Ty/p,T.) € T £ T4



Now have both lower and upper
oound on running time for p
Orocessors

max(Ty/p,T.) € T £ T4




Now have both lower and upper
oound on running time for p
Orocessors

<
is no more than twice
as big as

that




So a greedy scheduler does pretty close to the best possible



So a greedy scheduler does pretty close to the best possible

Though note that no real scheduler is perfect
will cause delays between task becoming ready and starting
(sometimes called scheduler friction)

can also cause memory effects. Movement of computations can
cause additional data movement

|deal scheduler => Rough but useful estimate



The Second Half:
Provable Implementation Bounds

Theorem [FP
calculateg

.d then v can be

om e on a CRE PRAM with p

The log p is related to load balancing

If w/p >d log p then “work domi cost

We refer to w/p as the parallelis

(Typo fixed by MS based on the video)

slide from Blelloch’s ICFP10 invited talk



degree of parallelism

W
d

An idea of how many processors we can usefully use






If p << degree of parallelism
(w/d) then we get near perfect
speedup




Work efficiency

Parallel algorithm is work efficient if it has work
that is asymptotically the same as that of the optimal
sequential algorithm

Aim first for low work
Then try to lower depth (span)



Back to our scan

s

L

oblivious or dataindependent computation

N =2" inputs, workofdotis1
work =7?
depth =7

N

A




Another scan (Sklansky)

| = —— —

For N inputs Depth logN

What about work??

- -> - - -



Quicksort

function Quicksort(A) = if (#A < 2) then A else
let pivot = A[#A/2];
lesser ={e in A| e < pivot};
equal ={e in A| e == pivot};
greater = {e in A| e > pivot};
result = {quicksort(v): v in [lesser,greater]};
in result[0] ++ equal ++ result[1];

Analysis in ICFP10 video gives depth = O(log N) work = O(N logN)



Quicksort

function Quicksort(A) = if (#A < 2) then A else
let pivot = A[#A/2];
lesser ={e in A| e < pivot};
equal ={e in A| e == pivot};
greater = {e in A| e > pivot};
result = {quicksort(v): v in [lesser,greater]};
in result[0] ++ equal ++ result[1];

Analysis in ICFP10 video gives depth = O(log N) work = O(N logN)

(The depth is improved over the example with trees, due to the addition of
parallel arrays as primitive.)



From the NESL quick reference

Basic Sequence Functions

Basic Operations Description

#Ha Length of a

a[i] ith element of a

dist(a,n) Create sequence of length n with a in each element.

zip(a,b) Elementwise zip two sequences together into a sequence of pairs.
[s:e] Create sequence of integers from s to e (not inclusive of e)

[s:e:d] Same as [s:e] but with a stride d.

Scans

plus_scan(a) Execute a scan on a using the + operator
min_scan(a) Execute a scan on a using the minimum operator
max_scan(a) Execute a scan on a using the maximum operator
or_scan(a) Execute a scan on a using the or operator
and_scan(a) Execute a scan on a using the and operator

See the DIKU NESL interpreter!

Work
0(1)

0(1)

O(n)

O(n)
O(e-s)
O((e-s)/d)




Lesson 1: Sequential Semantics

 Debugging is much easier without non-
determinism

* Analyzing correctness is much easier without
non-determinism

 If it works on one implementation, it works on all
implementations

« Some problems are inherently concurrent—these
aspects should be separated

Slide borrowed from Blelloch’s retrospective talk on NESL.
glew.org/damp2006/Nesl.ppt



Lesson 2: Cost Semantics

* Need a way to analyze cost, at least
approximately, without knowing details of the
implementation

* Any cost model based on processors is not going
to be portable - too many different kinds of
parallelism

Slide borrowed from Blelloch’s retrospective talk on NESL.
glew.org/damp2006/Nesl.ppt



Lesson 3: Too Much Parallelism

Needed ways to back out of parallelism
* Memory problem

* The “flattening” compiler technique was too
aggressive on its own

* Need for Depth First Schedules or other
scheduling techiques

» Various bounds shown on memory usage

Slide borrowed from Blelloch’s retrospective talk on NESL.
glew.org/damp2006/Nesl.ppt



NESL :what more should be done?

Take account of LOCALITY of data and
account for communication costs
(Blelloch has been working on this.)

Deal with exceptions and randomness

Reduce amount of parallelism where appropriate
(see Futhark lecture)



NESL also influenced

The Java 8 streams that you will see on Monday next week

Intel Array Building Blocks (ArBB)

That has been retired, but ideas are reappearing as C/C++ extensions
Futhark, which you will see on Thursday next week

Collections seem to encourage a functional style even in non
functional languages

(remember Backus’ paper from first lecture)



Amorphous

T

Nested Data Parallel

A Haskell
Flat Accelerate Repa
Embedded Full

Slide borrowed from lecture by G. Keller



Data Parallel Haskell (DPH)
Intentions

NESL was a seminal breakthrough but, fifteen years later it remains largely un-
exploited.Our goal is to adopt the key insights of NESL, embody them in a modern,
widely-used functional programming language, namely Haskell, and implement them
in a state-of-the-art Haskell compiler (GHC). The resulting system, Data Parallel
Haskell, will make nested data parallelism available to real users.

Doing so is not straightforward. NESL a first-order language, has very few data types,
was focused entirely on nested data parallelism, and its implementation is an
interpreter. Haskell is a higher-order language with an extremely rich type system; it
already includes several other sorts of parallel execution; and its implementation is a
compiler.

http://www.cse.unsw.edu.au/~chak/papers/fsttcs2008.pdf



http://www.cse.unsw.edu.au/~chak/papers/fsttcs2008.pdf

DPH

Parallel arrays [:e:] (which can contain arrays)



DPH

Parallel arrays [:e:] (which can contain arrays)

Expressing parallelism = applying collective operations to parallel arrays

Note: demand for any element in a parallel array results in eval of all elements



DPH array operations

(1) :: [:a:] > Int->a

sliceP :: [:a:] -> (Int,Int) -> [:a:]

replicateP :: Int -> a -> [:a:]

mapP :: (a->b) -> [:a:] -> [:b:]

zipP :: [:a:] -> [:b:] -> [:(a,b):]

ZipWithP :: (a->b->c) -> [:a:] -> [:b:] -> [:c]
filterP :: (a->Bool) -> [:a:] -> [:a:]

concatP :: [:[:a:]:] -> [:a:]

concatMapP :: (a -> [:b:]) -> [:a:] -> [:b:]
unconcatP :: [:[:a:]:] -> [:b:] -> [:[:b:]:]
transposeP :: [:[:a:]:] -> [:[:a:]:]

expandP :: [:[:a:]:] -> [:b:] -> [:b]
combineP :: [:Bool:] -> [:a:] -> [:a:] -> [:a:]
splitP :: [:Bool:] -> [:a:] -> ([:a:], [:a:])



Examples

svMul :: [:(Int,Float):] -> [:Float:] -> Float
svMul sv v = sumP [: f£*(v !': i) | (i,f) <- sv :]
smMul

[: (Int,Float):]:] -> [:Float:] -> [:Float:]
= [:

[:
smMul sm v svMul row v | row <- sm :]

Nested data parallelism
Parallel op (svMul) on each row



Data parallelism

Perform same computation on a collection of differing data values

examples: HPF (High Performance Fortran)
CUDA

Both support only flat data parallelism

Flat : each of the individual computations on (array) elements is
sequential

those computations don’t need to communicate
parallel computations don’t spark further parallel computations



Regular, Shape-polymorphic, Parallel Arrays in Haskell

Gabriele Keller® Manuel M. T. Chakravarty® Roman Leshchinskiy?

Simon Peyton Jones*  Ben Lippmeier’

fComputer Science and Engineering, University of New South Wales *Microsoft Research Ltd, Cambridge
{keller,chak,rl benl}@cse.unsw.edu.au simonpj@microsoft.com

API for purely functional, collective operations over dense,
rectangular, multi-dimensional arrays supporting shape
polymorphism

ICFP 2010



ldeas

Purely functional array interface using collective (whole array)
operations like map, fold and permutations can
* combine efficiency and clarity
* focus attention on structure of algorithm, away from low level details

Influenced by work on algorithmic skeletons based on Bird
Meertens formalism (look for PRG-56)

Provides shape polymorphism not in a standalone specialist
compiler like SAC, but using the Haskell type system



ldeas

Purely functional array interface using collective (whole array)
operations like map, fold and permutations can
* combine efficiency and clarity
* focus attention on structure of algorithm, away from low level details

Influenced by wor
WY s st Rie sis]  And you will have a lecture on Single

Assignment C later in the course

Provides shape po
compiler like SAC, but using the Haskell type system



terminology

Regular arrays
dense, rectangular, most elements non-zero

shape polymorphic
functions work over arrays of arbitrary dimension



terminology

Regular array
dense, rect note: the arrays are purely

shape polyr
functions w

functional and immutable

All elements of an array are

demanded at once -> parallelism

P processing elements, n array
elements => n/P consecutive
elements on each proc. element

0

o




Delayed (or pull) arrays  great
idea!

Represent array as function from index to value

Not a new idea
Originated in Pan in the functional world | think

See also
Compiling Embedded Langauges



http://conal.net/Pan/
http://conal.net/papers/jfp-saig/compile-dsel.pdf

But this is 100™* slower than
expected

doubleZip :: Array DIM2 Int -> Array DIM2 Int
-> Array DIM2 Int

doubleZip arrl arr?2
= map (* 2) $ zipWith (+) arrl arr?2



Fast but cluttered

doubleZip arrl@(Manifest ! ! ) arr2@(Manifest ! ! )
= force $ map (* 2) $ zipWith (+) arrl arr2



Things moved on!

Repa from ICFP 2010 had ONE type of array (that could be
either delayed or manifest, like in many EDSLs)

A paper from Haskell’11 showed efficient parallel stencil
convolution

http://www.cse.unsw.edu.au/~keller/Papers/stencil.pdf



http://www.cse.unsw.edu.au/~keller/Papers/stencil.pdf

Repa’s real strength

Stencil computations!

[stencil?2|

do
(r, g, b) <- 1iftM (either (error . show) R.unzip3) readImageFromBMP "in.bmp"
[r’, g’, b’] <- mapM (applyStencil simpleStencil) [r, g, b]
writeImageToBMP "out.bmp" (U.zip3 r’ g’ b’)



Repa’s real strength

http://www.cse.chalmers.se/edu/year/2015/course/DAT280 Parallel_Fu
nctional_Programming/Papers/RepaTutoriall3.pdf




Fancier array type (Repa 2

data Array sh a

= Array { arrayExtent :: sh
, arrayRegions :: [Region sh a] }
data Region sh a
= Region { regionRange :: Range sh
, regionGen :: Generator sh a }
data Range sh
= RangeAll
| RangeRects { rangeMatch :: sh -> Bool

, rangeRects :: [Rect sh] }
data Rect sh
= Rect sh sh

data Generator sh a
= GenManifest { genVector :: Vector a }

| forall cursor.

GenCursored { genMake :: sh -> cursor
, genShift :: sh -> cursor -> cursor
, genLoad 11 cursor -> a }

Figure 5. New Repa Array Types



Fancier array type

Array sh a
Array { arrayExtent :: sh
, arrayRegions :: [Region sh a] }
Region sh a
Region { regionRange :: Range sh
, regionGen :: Generator sh a }
Range sh
RangeAll
RangeRects { rangeMatch :: sh
, rangeRects -
Rect sh
Rect sh sh
Generator sh a

GenManifest { genVector

forall cursor.
GenCursored { genMake

-

\

But you need to be a guru to get good performance!




Put Array representation into the
type!

The fundamental problem with Repa 1 & 2 is the following: at an
particular point in the code, the programmer typically has a clear
idea of the array representation they desire. For example, it may
consist of three regions, left edge, middle, right edge, each of which
1s a delayed array. Although this knowledge 1s statically known to
the the programmer, it 1s invisible in the types and only exposed to
the compiler if very aggressive value inlining is used. Moreover, the
programmer’s typeless reasoning can easily fail, leading to massive
performance degradation.

The solution is to expose static information about array repre-
sentation to Haskell's main static reasoning system; its type sys-
tem.



Haskell’12

Guiding Parallel Array Fusion with Indexed Types

Repa 3

Ben Lippmeier’  Manuel M. T. Chakravarty’  Gabriele Keller'  Simon Peyton Jones*
"Computer Science and Engineering

University of New South Wales, Australia
{benl, chak keller} @cse unsw edu.au

*Microsoft Research Lid
Cambridge, England

{simonpj }@microsoft.com

Abstract

We present a refined approach to parallel array fusion that uses
indexed types to specify the internal representation of each array.
Our approach aids the client programmer in reasoning about the
performance of their program in terms of the source code. It also
makes the intermediate code easier to transform at compile-time,
resulting in faster compilation and more reliable runtimes. We
demonstrate how our new approach improves both the clarity and
performance of several end-user written programs, including a fluid
flow solver and an interpolator for volumetric data.

Categories and Subject Descriptors  1D.3.3 [Programming Lan-

This second version of doubleZip runs as fast as a hand-written
imperative loop. Unfortunately, it is cluttered with explicit pattern
matching, bang patterns, and use of the force function. This clut-
ter 1s needed to guide the compiler towards efficient code, but it
obscures the algorithmic meaning of the source program. It also
demands a deeper understanding of the compilation method than
most users will have, and in the next section, we will see that these
changes add an implicit precondition that is not captured in the
function signature. The second major version of the library, Repa 2,
added support for efficient parallel stencil convolution, but at the
same time also increased the level of clutter needed to achieve effi-
cient code [8].

http://www.youtube.com/watch?v=YmZtP11mBho

guote on previous slide was from this paper


http://www.youtube.com/watch?v=YmZtP11mBho

Repa info

http://repa.ouroborus.net/



http://repa.ouroborus.net/

Repa Arrays

Repa arrays are wrappers around a linear structure that holds the element data.
The representation tag determines what structure holds the data.

Delayed Representations (functions that compute elements)
D -- Functions from indices to elements.
C -- Cursor functions.

Manifest Representations (real data)
U -- Adaptive unboxed vectors.

V -- Boxed vectors.

B -- Strict ByteStrings.

F -- Foreign memory buffers.

Meta Representations

P -- Arrays that are partitioned into several representations.

S -- Hints that computing this array is a small amount of work, so computation should be sequential rather than
parallel to avoid scheduling overheads.

| -- Hints that computing this array will be an unbalanced workload, so computation of successive elements should be
interleaved between the processors

X -- Arrays whose elements are all undefined.



10 Array representations!

e D — Delayed arrays (delayed) §3.1

® C — Cursored arrays (delayed) §4.4

e U — Adaptive unboxed vectors (manifest) §3.1
* V — Boxed vectors (manifest) §4.1

e B — Strict byte arrays (manifest) §4.1

o F — Foreign memory buffers (manifest) §4.1
e P — Partitioned arrays (meta) §4.2

e S — Smallness hints (meta) §5.1.1

e I — Interleave hints (meta) §5.2.1

e X — Undefined arrays (meta) §4.2



10 Array representations!

e D — Delayed arrays (delayed) §3.1

® C — Cursored arrays (delayed) §4.4

e U — Adaptive unboxed vectors (manifest) §3.1
* V — Boxed vectors (manifest) §4.1

e B — Strict byte arrays (manifest) §4.1

o F — Foreign memory buffers (manifest) §4.1
e P — Partitioned arrays (meta) §4.2

e S — Smallness hints (meta) §5.1.1

e I — Interleave hints (meta) §5.2.1

e X — Undefined arrays (meta) §4.2

But the 18 minute presentation at Haskell’12 makes it all make sense!!
Watch it!

http://www.youtube.com/watch?v=YmZtP11mBho



http://www.youtube.com/watch?v=YmZtP11mBho

Fusion

Delayed (and cursored) arrays enable fusion that
avoids intermediate arrays

User-defined worker functions can be fused

This is what gives tight loops in the final code



Example: sorting

Batcher’s bitonic sort
(see lecture from last week)

“hardware-like” data-independent

http://www.cs.kent.edu/~batcher/sort.pdf



http://www.cs.kent.edu/~batcher/sort.pdf

inc (not decreasing)
then
dec (not increasing)

or a cyclic shift of such a sequence



12345678910 3864210



@2345678@108642 10

1 9



1‘3456789‘8642 10

1 2 9 10



12345678910 38642 10
1234 9 10 8 6



12345678910 38642 10
12344 9 10 8 6 5

Swap!



12345678910 38642 10
123442 910 86 56



12345678910 3864210
12344210



12345678910 3864210
12344210

bitonic bitonic

IN



Butterfly

——

e
o

3

N’

bitonic




Butterfly

%

OIC

——

[

\4
[l

bltonlc
bitonic



bitonic merger




Question

What are the work and depth (or span) of bitonic
merger?



Making a recursive sorter (D&C)

Make a bitonic sequence using two
half-size sorters



Batcher’s sorter (bitonic)




Let’s try to write this sorter down in
Repa



bitonic merger




bitonic merger

whole array operation



dee for diamond

dee :: (Shape sh, Monad m) => (Int -> Int -> Int) -> (Int -> Int -> Int)
-> Int
-> Array U (sh :. Int) Int
-> m (Array U (sh :. Int) Int)
dee £ g s arr = let sh = extent arr in computeUnboxedP $ fromFunction sh ixf
where
ixf (sh :. i) = if (testBit i1 s) then (g a b) else (f a b)
where
a=arr ! (sh :. i)
b=arr ! (sh :. (1 "xor s2))

s2 = (1::Int) "shiftl s

assume input array has length a power of 2, s >0 in this and
later functions



dee for diamond

dee :: (Shape sh, Monad m) => (Int -> Int -> Int) -> (Int -> Int -> Int)
-> Int
-> Array U (sh :. Int) Int
-> m (Array U (sh :. Int) Int)
dee £ g s arr = let sh = extent arr in computeUnboxedP $ fromFunction sh ixf
where
ixf (sh :. i) = if (testBit i1 s) then (g a b) else (f a b)
where
a=arr ! (sh :. i)
b=arr ! (sh :. (1 "xor s2))

s2 = (1::Int) "shiftl s

deefg3 gives indexi matched with index (i xor 8)



bitonicMerge n = compose [dee min max (n-i) | i <- [1l..n]]



tmerge




vee

vee :: (Shape sh, Monad m) => (Int -> Int -> Int) -> (Int -> Int -> Int)
-> Int
-> Array U (sh :. Int) Int
-> m (Array U (sh :. Int) Int)

vee £ g s arr = let sh = extent arr in computeUnboxedP $ fromFunction sh ixf
where

ixf (sh :. ix) = if (testBit ix s) then (g a b) else (f a b)
where
a=arr ! (sh :. ix)
b =arr ! (sh :. newix)

newix = flipLSBsTo s ix



vee

vee :: (Shape sh, Monad m) => (Int -> Int -> Int) -> (Int -> Int -> Int)
-> Int
-> Array U (sh :. Int) Int
-> m (Array U (sh :. Int) Int)

vee £ g s arr = let sh = extent arr in computeUnboxedP $ fromFunction sh ixf

where
ixf (sh :. ix) = if (testBit ix s) then (g a b) else (f a b)

where
a =arr ! (sh :. ix)
b =arr ! (sh :. newix)

newix = flipLSBsTo s ix

vee fg3 out(0) -> f a(0) a(7)
out(7)-> g a(7) a(0)
out(1)-> f a(1) a(b)
out(6)-> g a(6) a(1)



tmerge

tmerge n = compose $ vee min max (n-1) : [dee min max (n-i) | i <- [2..n]]






tsort n = compose [tmerge i | i <- [1l..n]]



Question

What are work and depth of this sorter??



Performance is decent!

Initial benchmarking for 2220 Ints
Around 800ms on 4 cores on my previous laptop
Compares to around 1.6 seconds for Data.List.sort (which is seqential)

Still slower than Persson’s non-entry from the sorting competition in the 2012 course
(which was at 400ms) -- a factor of a bit under 2



Comments

Should be very scalable
Can probably be sped up! Need to add sequentialness ©

Similar approach might greatly speed up the FFT in repa-examples
(and | found a guy running an FFT in Haskell competition)

Note that this approach turned a nested algorithm into a flat one
Idiomatic Repa (written by experts) is about 3 times slower.

Genericity costs here!

Message: map, fold and scan are not enough. We need to think more
about higher order functions on arrays (e.g. with binary operators)



Nice success story at NYT

Haskell in the Newsroom

Haskell in Industry



https://www.infoq.com/presentations/haskell-newsroom-nyt
https://wiki.haskell.org/Haskell_in_industry

stackoverflow

is your friend
See for example

http://stackoverflow.com/questions/14082158/idiomatic-option-pricing-and-risk-
using-repa-parallel-arrays?rg=1



http://stackoverflow.com/questions/14082158/idiomatic-option-pricing-and-risk-using-repa-parallel-arrays?rq=1

Conclusions (Repa)
Based on DPH technology
Good speedups!

Neat programs

Good control of Parallelism

BUT CACHE AWARENESS needs to be tackled



Conclusions

Development seems to be happening in Accelerate,
which now works for both

multicore and GPU (work ongoing)

Array representations for parallel functional
programming is an important, fun and frustrating
research topic ©



par and pseq
Strategies

Par monad
Repa

(Accelerate)

(Obsidian)

NESL

Futhark

SAC

Haxl



Questions to think about

What is the right set of whole array operations?

(remember Backus from the first lecture)



A big question (at least for me)

How much should one put in the types?



More research needed

Combinators for parallel programming (influenced by Skeletons perhaps?)
Support for benchmarking, granularity control

Support for chunking (for example much needed in the Par monad)
Expressing locality Dealing with cache hierarchies

Need better ways to reinvent and assess parallel (functional) algorithms
(I find this paper about parallelising an important algorithm in visualisation very inspiring)



https://www.researchgate.net/publication/282975362_Flying_Edges_A_High-Performance_Scalable_Isocontouring_Algorithm

Oh and we are looking for doctoral students to
work on secure programming of loT!!

Octopi Job ad



https://www.chalmers.se/en/about-chalmers/Working-at-Chalmers/Vacancies/Pages/default.aspx

