
Parallel	Functional	Programming
Data	Parallelism

Mary	Sheeran

http://www.cse.chalmers.se/edu/course/pfp

Data	parallelism

Introduce parallel data	structures and	make
operations	on	them parallel

Often data	parallel arrays

Canonical example :	NESL		(NESted-parallel Language)
(Blelloch)

Data	parallelism

Introduce parallel data	structures and	make
operations	on	them parallel

Often data	parallel arrays

Canonical example :	NESL		(NESted-parallel Language)
(Blelloch)

See	video	of	ICFP10	invited	talk	on	Lectures	page

NESL
concise (good for	specification,	prototyping)

allows programming in	familiar style (but still	gives	parallelism)

allows nested parallelism (as	distinct from	flat)

associated language-based cost model

gave decent speedups on	wide-vector parallel machines of	the	day

Hugely	influential!

http://www.cs.cmu.edu/~scandal/nesl.html

NESL
Parallelism	without	concurrency!

Completely	deterministic	(modulo	floating	point	noise)

No	threads,	processes,	locks,	channels,	messages,	 		monitors,	
barriers,	or	even	futures,	at	source	level

Based	on	Blelloch’s thesis	work:	Vector	Models	for	Data-Parallel	
Computing,	MIT	Press	1990

NESL

NESL	is	a	sugared	typed	lambda	calculus with	a	set	
of	array	primitives	and	an	explicit	parallel	map	over	
arrays		

To	be	useful	for	analyzing parallel	algorithms,	NESL	was	
designed	with	rules	for	calculating	the	work	(the	total	
number	of	operations	executed)	and	depth	(the	longest	
chain	of	sequential	dependence)	of	a	computation.

NESL
For	modeling	the	cost	of	NESL	we	augment	a	standard	
call	by	value	operational	semantics	to	return	two	cost	
measures:	a	DAG	representing	the	sequential	
dependences	in	the	computation	and	a	measure	of	the	
space	taken	by	a	sequential	implementation.	We	show	
that	a	NESL	program	with	w	work	(nodes	in	the	DAG)	d	
depth	(levels	in	the	DAG)	and	s	sequential	space	can	be	
implemented	on	a	p	processor	butterfly	network,	
hypercube	or	CRCW	PRAM	using	O(w/p	+	d	log	p)	time	
and	O	(s	+	dp log	p)	reachable	space.	For	programs	with	
sufficient	parallelism	these	bounds	are	optimal	in	that	
they	give	 linear	speedup	and	use	space	within	a	
constant	factor	of	the	sequential	space.	

Quotes	are	from	ICFP’96	paper

Quotes	are	from	ICFP’96	paperThis	paper	adds	the	accounting	of	costs	to	the	semantics	
of	the	language	and	proves	a	mapping	of	those	costs	into	

running	 time	/	space	on	concrete	machine	models

158

Image:	©	Thinking	Machines	Corporation,	 1986.	Photo:	Steve	
Grohe.

http://www.inc.com/magazine/19950915/2622.html

Connection	Machine

First	commercial massively
parallel machine

65k	processors

can see CM-1	and	CM-5
(from	1993)		at	Computer
History	Museum,	 	Mountain
View

Hypercube

NESL	array operations

function	factorial(n)	=
if	(n	<=	1)	then	1
else	n*factorial(n-1);

{factorial(i)	:	i in	[3,	1,	7]};																		

apply to	each =			parallel map (works with	user-defined functions
=>	load balancing)

list	comprehension style notation

Online	interpreter	J
The result of:

function factorial(n) =

if (n <= 1) then 1
else n*factorial(n-1);

{factorial(i) : i in [3, 1, 7]};

factorial = fn : int -> int

it = [6, 1, 5040] : [int]

Bye.

is:

http://www.cs.cmu.edu/~scandal/nesl/tutorial2.html

apply to	each (multiple	sequencs)

The result of:

{a + b : a in [3, -4, -9]; b in [1, 2, 3]};
is:

it = [4, -2, -6] : [int]

Bye.

apply to	each (multiple	sequencs)

The result of:

{a + b : a in [3, -4, -9]; b in [1, 2, 3]};
is:

it = [4, -2, -6] : [int]

Bye.

Qualifiers	in	comprehensions	 are	zipping	 rather	than	nested	as	in	Haskell
Prelude>	 [a	+	b	|	a	<- [3,-4,-9],	b	<- [1,2,3]]
[4,5,6,-3,-2,-1,-8,-7,-6]

Filtering too

The result of:

{a * a : a in [3, -4, -9, 5] | a > 0};

is:

it = [9, 25] : [int]

Bye

scan (Haskell first)

*Main> scanl1 (+) [1..10]
[1,3,6,10,15,21,28,36,45,55]

Main> scanl1 () [1..10]
[1,2,6,24,120,720,5040,40320,362880,3628800]

scan diagram

Brent	Kung	(’79)

Brent	Kung

forward			tree +				several reverse trees

recursive decomposition

• (
Si
j
=	ai *	ai+1 *	.	.	.	*	aj

indices from	 	1			here

recursive decomposition

• divdivide
Si
j
=	ai *	ai+1 *	.	.	.	*	aj

one recursive call on	n/2	
inputs

divide
conquer
combine

prescan

scan ”shifted right	by	one”
prescan of
[a1	,	a2,												 ,a3, ,a4,								.	.	. , an]
is
[I,			a1,		a1 *	a2,		a1 *	a2 *	a3,	…	,	a1 *	…	*	an-1]

identity element

scan from	prescan

easy		(constant time)
[I,						a1,		a1 *	a2,		a1 *	a2 *	a3,	…	,	a1 *	…	*	an-1]		an

[a1,		a1 *	a2,		a1 *	a2 *	a3,	…	,	a1 *	…	*	an-1	,a1 *	…	*	an]
*

scan from	prescan

easy		(constant time)
[I,						a1,		a1 *	a2,		a1 *	a2 *	a3,	…	,	a1 *	…	*	an-1]		an

[a1,		a1 *	a2,		a1 *	a2 *	a3,	…	,	a1 *	…	*	an-1	,a1 *	…	*	an]
*

NOTE
scan =			parallel prefix

the	power	of	scan
Blelloch pointed out that	once you	have scan
you	can do LOTS	of	interesting algorithms,	inc.

To	lexically	compare	strings	of	characters.	For	example,	to	determine	that	"strategy"	should	
appear	before	"stratification"	in	a	dictionary

To	evaluate	polynomials
To	solve	recurrences.	For	example,	to	solve	the	recurrences

To	implement	radix	sort
To	implement	quicksort
To	solve	tridiagonal linear	systems
To	delete	marked	elements	from	an	array
To	dynamically	allocate	processors
To	perform	lexical	analysis.	For	example,	to	parse	a	program	into	tokens
and	many	more
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/ieee-scan.ps.gz

xi =		ai xi-1 +	bi xi-2 and	xi =	ai +	bi /	xi-1

prescan in	NESL

function scan_op(op,identity,a) =
if #a == 1 then [identity]
else
let e = even_elts(a);

o = odd_elts(a);
s = scan_op(op,identity,{op(e,o): e in e; o in o})

in interleave(s,{op(s,e): s in s; e in e});

function scan_op(op,identity,a) =
if #a == 1 then [identity]
else
let e = even_elts(a);

o = odd_elts(a);
s = scan_op(op,identity,{op(e,o): e in e; o in o})

in interleave(s,{op(s,e): s in s; e in e});

prescan in	NESL

zipWith	op	e	o
zipWith	op	s	e

prescan
function scan_op(op,identity,a) =
if #a == 1 then [identity]
else
let e = even_elts(a);

o = odd_elts(a);
s = scan_op(op,identity,{op(e,o): e in e; o in o})

in interleave(s,{op(s,e): s in s; e in e});

scan_op('+,	0,	[2,	8,	3,	-4,	1,	9,	-2,	7]);

is:	

scan_op =	fn	:	((b,	b)	->	b,	b,	[b])	->	[b]	::	(a	in	any;	b	in	any)

it	=	[0,	2,	10,	13,	9,	10,	19,	17]	:	[int]

prescan
function scan_op(op,identity,a) =
if #a == 1 then [identity]
else
let e = even_elts(a);

o = odd_elts(a);
s = scan_op(op,identity,{op(e,o): e in e; o in o})

in interleave(s,{op(s,e): s in s; e in e});

scan_op(max,	0,	[2,	8,	3,	-4,	1,	9,	-2,	7]);

is:	

scan_op =	fn	:	((b,	b)	->	b,	b,	[b])	->	[b]	::	(a	in	any;	b	in	any)

it	=	[0,	2,	8,	8,	8,	8,	9,	9]	:	[int]

Batcher’s bitonic merge

function bitonic_sort(a) =
if (#a == 1) then a
else

let
bot = subseq(a,0,#a/2);
top = subseq(a,#a/2,#a);
mins = {min(bot,top):bot;top};
maxs = {max(bot,top):bot;top};

in flatten({bitonic_sort(x) : x in [mins,maxs]});

bitonic_sort (merger)

min

max

bitonic_sort (merger)

bot

bot

top

min

max

bitonic sequence

inc (not decreasing)
then

dec (not increasing)

or a cyclic shift of such a sequence

Butterfly

bitonic

Butterfly

bitonic
bitonic

bitonic
>=

Now	use	Divide	and	Conquer	(again)	to	do	sorting

How??

bitonic sort

sort

sort

bitonic
merge

http://www.cs.kent.edu/~batcher/sort.pdf

rev

bitonic sort

function batcher_sort(a) =
if (#a == 1) then a
else

let b = {batcher_sort(x) : x in bottop(a)};
in bitonic_sort(b[0]++reverse(b[1]));

bitonic sort

sort

sort

bitonic
merge

http://www.cs.kent.edu/~batcher/sort.pdf

rev

bitonic sort

sort

sort

rev

bitonic
merge

http://www.cs.kent.edu/~batcher/sort.pdf

Read	Batcher’s	paper	from	1968
It	is	a	classic!			(2753	citations	on	GS)

Quicksort

function	Quicksort(A)	 =	if	(#A	<	2)	then	A	else
let	pivot	=	A[#A/2];

lesser	=	{e	in	A|	e	<	pivot};
equal	=	{e	in	A|	e	==	pivot};
greater	=	{e	in	A|	e	>	pivot};
result	=	{quicksort(v):	v	in	[lesser,greater]};

in	result[0]	++	equal	++	result[1];

parentheses	matching

function parentheses_match(string)	 =
let
depth =	plus_scan({if c==`(then 1	else -1	:	c	in	string});
depth =	{d	+	(if c==`(then 1	else 0):	c	in	string;	d	in	depth};
rnk =	permute([0:#string],	 rank(depth));	
ret =	interleave(odd_elts(rnk),	 even_elts(rnk))

in	permute(ret,	 rnk);

For	each index,	return the	index	of	the	matching parenthesis

one scan,	a	map,	a	zipWith,	 	two permutes and	an	interleave,
also rank	and	odd_elts and	even_elts

parentheses	matching

function parentheses_match(string)	 =
let
depth =	plus_scan({if c==`(then 1	else -1	:	c	in	string});
depth =	{d	+	(if c==`(then 1	else 0):	c	in	string;	d	in	depth};
rnk =	permute([0:#string],	 rank(depth));	
ret =	interleave(odd_elts(rnk),	 even_elts(rnk))

in	permute(ret,	 rnk);

For	each index,	return the	index	of	the	matching parenthesis

one scan,	a	map,	a	zipWith,	 	two permutes and	an	interleave,
also rank	and	odd_elts and	even_elts

permute([7,8,9],[2,1,0]);
permute([7,8,9],[1,2,0]);

it	=	[9,	8,	7]	:	[int]

it	=	[9,	7,	8]	:	[int]

parentheses	matching

function parentheses_match(string)	 =
let
depth =	plus_scan({if c==`(then 1	else -1	:	c	in	string});
depth =	{d	+	(if c==`(then 1	else 0):	c	in	string;	d	in	depth};
rnk =	permute([0:#string],	 rank(depth));	
ret =	interleave(odd_elts(rnk),	 even_elts(rnk))

in	permute(ret,	 rnk);

For	each index,	return the	index	of	the	matching parenthesis

one scan,	a	map,	a	zipWith,	 	two permutes and	an	interleave,
also rank	and	odd_elts and	even_elts

rank([6,8,9,7]);

it	=	[0,	2,	3,	1]	:	[int]

rank([6,8,9,7,9]);

it	=	[0,	2,	3,	1,	4]	:	[int]

parentheses	matching

function parentheses_match(string)	 =
let
depth =	plus_scan({if c==`(then 1	else -1	:	c	in	string});
depth =	{d	+	(if c==`(then 1	else 0):	c	in	string;	d	in	depth};
rnk =	permute([0:#string],	 rank(depth));	
ret =	interleave(odd_elts(rnk),	 even_elts(rnk))

in	permute(ret,	 rnk);

For	each index,	return the	index	of	the	matching parenthesis

one scan,	a	map,	a	zipWith,	 	two permutes and	an	interleave,
also rank	and	odd_elts and	even_elts

A	”step	through”	of	this	
function	 is	provided	at	end	of	

these	slides

What does Nested mean??

{plus_scan(a) : a in [[2,3], [8,3,9], [7]]};

it = [[0, 2], [0, 8, 11], [0]] : [[int]]

What does Nested mean??

{plus_scan(a) : a in [[2,3], [8,3,9], [7]]};

it = [[0, 2], [0, 8, 11], [0]] : [[int]]

sequence	of	sequences
apply to	each of	a	PARALLEL	

function

What does Nested mean??

{plus_scan(a) : a in [[2,3], [8,3,9], [7]]};

it = [[0, 2], [0, 8, 11], [0]] : [[int]]

sequence	of	sequences
apply to	each of	a	PARALLEL	

function

Implemented using Blelloch’s Flattening Transformation,	which
converts nested parallelism into flat.		Brilliant	idea,	challenging
to	make	work	in	fancier languages (see DPH	and	good work	on	Manticore (ML))

What	does	Nested		mean??
Another	example

function	svxv (sv,	v)	=
sum	({x	*	v[i]	:	(x,	i)	in	sv});

function	smxv (sm,	v)	=
{	svxv(row,	v)	:	row	in	sm }

Nested	Parallelism
Arbitrarily	nested	parallel	loops	+	fork-join

Assumes	no	synchronization	among	parallel
tasks	except	at	join	points	=>	a	task	can	only	sync	with	its	
parent	(sometimes	called	fully	strict)

Deterministic	(in	absence	of	race	conditions)

Advantages:
Good	schedulers	are	known
Easy	to	understand,	debug,	and	analyze

Nested	Parallelism

Dependence	graph	is	series-parallel

Nested	Parallelism

Dependence	graph	is	series-parallel

Task	can	only	synchronise	with	
its	parent

But	not

But	not

Here,	a	task	can	only	
synchronise	with	an	ancestor	
(strict	(but	not	fully	 strict))

Back	to	examples

this	prescan is	actually flat

function scan_op(op,identity,a) =
if #a == 1 then [identity]
else
let e = even_elts(a);

o = odd_elts(a);
s = scan_op(op,identity,{op(e,o): e in e; o in o})

in interleave(s,{op(s,e): s in s; e in e});

Back	to	examples
Batcher’s bitonic merge IS	NESTED

function bitonic_sort(a) =
if (#a == 1) then a
else

let
bot = subseq(a,0,#a/2);
top = subseq(a,#a/2,#a);
mins = {min(bot,top):bot;top};
maxs = {max(bot,top):bot;top};

in flatten({bitonic_sort(x) : x in [mins,maxs]});

and	so	is	the	sort

Back	to	examples
Batcher’s bitonic merge IS	NESTED

function bitonic_sort(a) =
if (#a == 1) then a
else

let
bot = subseq(a,0,#a/2);
top = subseq(a,#a/2,#a);
mins = {min(bot,top):bot;top};
maxs = {max(bot,top):bot;top};

in flatten({bitonic_sort(x) : x in [mins,maxs]});

and	so	is	the	sort

nestedness is	good for	D&C
and	for	irregular computations

Back	to	examples
parentheses matching is	FLAT

function parentheses_match(string)	 =
let
depth =	plus_scan({if c==`(then 1	else -1	:	c	in	string});
depth =	{d	+	(if c==`(then 1	else 0):	c	in	string;	d	in	depth};
rnk =	permute([0:#string],	 rank(depth));	
ret =	interleave(odd_elts(rnk),	 even_elts(rnk))

in	permute(ret,	 rnk);

For	each index,	return the	index	of	the	matching parenthesis

What about a	cost model?
Blellochempasises
1) work	:			total	number of	operations

represents	total	cost	(integral	of	needed	resources	over	time	=	running	time	
on	one	processor)

2)	depth or	span:	longest	chain	of	sequential	dependencies
best	possible	running	time	on	an	unlimited	number	of	processors

claims:		
1) easier	to	think	about	algorithms	based	on	work	and	depth	than	to	use	running	

time	on	machine	with	P	processors	(e.g.	PRAM)
2) work	and	depth	predict	running	time	on	various	different	machines

(at	least	in	the	abstract)

work

on	a	sequential	machine	=	sequential	time

but	can	maybe	be	shared	among	multiple	
processors

Work		w

on	a	sequential	machine	=	sequential	time

but	can	maybe	be	shared	among	multiple	
processors

Evenly	shared	work	on	#proc processors	would	
take	(about)	w/#proc time				

Work		w

on	a	sequential	machine	=	sequential	time

but	can	maybe	be	shared	among	multiple	
processors

Evenly	shared	work	on	#proc processors	would	
take	(about)	w/#proc time						perfect	speedup	

Span			s

(or	depth)

Allows	analysis	of	extent	to	which	work	can	be	
shared	among	processors

Span			s

(or	depth)

Allows	analysis	of	extent	to	which	work	can	be	
shared	among	processors

without	resorting	to	details	of	machines,	and	
how	work	is	distributed	over	processors

scheduler

Assume	a	“reasonable”	scheduler

A	greedy	scheduler guarantees	that	no	
processor	will	be	idle	(=	not	working	on	part	of	
the	computation)	if	there	is	work	remaining	to	
do

scheduler

Assume	a	“reasonable”	scheduler

A	greedy	scheduler guarantees	that	no	
processor	will	be	idle	(=	not	working	on	part	of	
the	computation)	if	there	is	work	remaining	to	
do

Then	runtime	<=	(work	/	#proc)	+	span

runtime	<=	(work	/	#proc)	+	span

If	the	first	term	dominates,	then	we	are	getting	near	
perfect	speedup	(within	a	factor	of	2)

Define

Parallelism	=	work	/	span

Number	of	processors	for	which	the	two	terms	are	equal
Gives	rough	upper	bound	on	number	of	processors	can	
use	effectively

Part	1:	simple	language based performance	model

slide from	Blelloch’s ICFP10	invited talk

slide from	Blelloch’s ICFP10	invited talk

slide from	Blelloch’s ICFP10	invited talk

slide from	Blelloch’s ICFP10	invited talk

slide from	Blelloch’s ICFP10	invited talk

slide from	Blelloch’s ICFP10	invited talk

Blelloch:
programming	 based	cost	models	could	change	the	way	people	 think	about
costs	and	open	door	 for	other	kinds	of	abstract	costs
doing	 it	in	terms	of	machines....	"that's	so	last	century"

slide from	Blelloch’s ICFP10	invited talk

d

(Typo	 fixed	by	MS	based	on	 the	video)

Brent’s	lemma
If	a	computation	can	be	performed	in t steps	with q operations	on	a	parallel	
computer	(formally,	a	PRAM)	with	an	unbounded	number	of	processors,	then	
the	computation	can	be	performed	in t + (q-t)/p steps	with p processors

http://maths-people.anu.edu.au/~brent/pd/rpb022.pdf

Back	to	our scan

oblivious or			data	independent	 		computation

N	=	2n inputs,	 				work	of	dot is	1
work	=	?
depth =	?

and	bitonic	sort?			

Quicksort

function	Quicksort(A)	 =	if	(#A	<	2)	then	A	else
let	pivot	=	A[#A/2];

lesser	=	{e	in	A|	e	<	pivot};
equal	=	{e	in	A|	e	==	pivot};
greater	=	{e	in	A|	e	>	pivot};
result	=	{quicksort(v):	v	in	[lesser,greater]};

in	result[0]	++	equal	++	result[1];

Analysis	in	ICFP10	video	gives									depth	=	O(log	N)				work	=	O(N	logN)	

Quicksort

function	Quicksort(A)	 =	if	(#A	<	2)	then	A	else
let	pivot	=	A[#A/2];

lesser	=	{e	in	A|	e	<	pivot};
equal	=	{e	in	A|	e	==	pivot};
greater	=	{e	in	A|	e	>	pivot};
result	=	{quicksort(v):	v	in	[lesser,greater]};

in	result[0]	++	equal	++	result[1];

Analysis	in	ICFP10	video	gives									depth	=	O(log	N)				work	=	O(N	logN)

(The	depth	is	improved	over	the	example	with	trees,	due	to	the	addition	of
parallel	arrays	as	primitive.)	

From	the	NESL	quick	reference

Basic	Sequence	Functions
Basic	Operations Description Work Depth
#a Length	of	a O(1) O(1)
a[i] ith element	of	a O(1) O(1)
dist(a,n) Create	sequence	of	 length	n	with	a	in	each	element. O(n) O(1)
zip(a,b) Elementwise zip	two	sequences	together	 into	a	sequence	of	pairs. O(n) O(1)
[s:e] Create	sequence	of	 integers	from	s	to	e	(not	 inclusive	of	e) O(e-s) O(1)
[s:e:d] Same	as	[s:e]	but	with	a	stride	d. O((e-s)/d)O(1)

Scans
plus_scan(a) Execute	a	scan	on	a	using	the	+	operator O(n) O(log	n)
min_scan(a) Execute	a	scan	on	a	using	the	minimum	operator O(n) O(log	n)
max_scan(a) Execute	a	scan	on	a	using	the	maximum	operator O(n) O(log	n)
or_scan(a) Execute	a	scan	on	a	using	the	or	operator O(n) O(log	n)
and_scan(a) Execute	a	scan	on	a	using	the	and	operator O(n) O(log	n)

NESL			:	what	more	should	be	done?

Take	account	of	LOCALITY	of	data	and
account	for	communication	costs
(Blelloch has	been	working	on	this.)

Deal	with	exceptions	and	randomness

Data	Parallel	Haskell	(DPH)	intentions

NESL	was	a	seminal	breakthrough	 but,	 fifteen	years	later	it	remains	largely	un-exploited.
Our	goal	is	to	adopt	the	key	insights	of	NESL,	embody	 them	in	a	modern,	 widely-used	
functional	programming	 language,	namely	Haskell,	and	implement	 them	in	a	state-of-the-
art	Haskell	compiler	(GHC).	The	resulting	system,	Data	Parallel	Haskell,	will	make	nested	
data	parallelism	available	to	real	users.

Doing	so	is	not	straightforward.	NESL	a	first-order	language,	has	very	few	data	types,
was	focused	entirely	on	nested	data	parallelism,	and	its	implementation	 is	an	interpreter.
Haskell	is	a	higher-order	 language	with	an	extremely	rich	type	system;	it	already	includes
several	other	sorts	of	parallel	execution;	and	its	implementation	 is	a	compiler.

http://www.cse.unsw.edu.au/~chak/papers/fsttcs2008.pdf

NESL	also	influenced

The	Java	8	streams	that	you	saw	on	Monday!!

Intel			Array	Building	Blocks				(ArBB)
That	has	been	retired,	but	 ideas	are	reappearing	as	C/C++	extensions

Collections	seems	to	encourage	a	functional	 style	even	in	non	functional	 languages
(remember	 Backus’	paper	from	first	lecture)

Summary

Programming-based	 cost	models			are	(according	 to	Blelloch)	MUCH	BETTER
than	machine-based	models

They	open	 the	door	 to	other	kinds	of	abstract	costs	than	just	work,	depth,	 space	…

There	is	fun	to	be	had	with	parallel	functional	algorithms	 (especially	as	the
Algorithms	 community	 is	still	struggling	 to	agree	on	useful	models	 for	use
In	analysing parallel	algorithms).

End

parentheses matching

function parentheses_match(string)	 =
let
depth =	plus_scan({if c==`(then 1	else -1	:	c	in	string});
depth =	{d	+	(if c==`(then 1	else 0):	c	in	string;	d	in	depth};
rnk =	permute([0:#string],	 rank(depth));	
ret =	interleave(odd_elts(rnk),	 even_elts(rnk))

in	permute(ret,	 rnk);

For	each index,	return the	index	of	the	matching parenthesis

()				(()			())				((()))

1		-1			1			1 -1			1	-1			-1			1		1 1 -1	-1		-1			

()				(()			())				((()))

1	-1			1			1 -1			1	-1		-1			1			1 1 -1	-1		-1

0			1			0			1			2			1		2				1			0			1			2				3			2			1				
prescan

(+)

()				(()			())				((()))

1	-1			1			1 -1			1	-1		-1			1			1 1 -1	-1		-1

0			1			0			1			2			1		2				1			0			1			2				3			2			1

1				1 1 2			2 2 2 1			1 2			3				3 2			1

+1			if (
+0		if)	

()				(()			())				((()))

1	-1			1			1 -1			1	-1		-1			1			1 1 -1	-1		-1

0			1			0			1			2			1		2				1			0			1			2				3			2			1

1				1 1 2			2 2 2 1			1 2			3				3 2			1					depth

+1			if (
+0		if)	

()				(()			())				((()))										string

1	-1			1			1 -1			1	-1		-1			1			1 1 -1	-1		-1

0			1			0			1			2			1		2				1			0			1			2				3		2			1

1			1 1 2			2 2 2 1			1 2			3			3 2			1											depth

0			1			2			6			7			8			9			3			4	10	12	13	11		5								rank(depth)

()				(()			())				((()))										string

1	-1			1			1 -1			1	-1		-1			1			1 1 -1	-1		-1

0			1			0			1			2			1		2				1			0			1			2				3		2			1

1			1 1 2			2 2 2 1			1 2			3			3 2			1											depth

0			1			2			3			4			5			6			7			8			9	10		11	12	13					[0:#string]
0			1			2			6			7			8			9			3			4	10	12	13	11		5								rank(depth)

0			1			2			7			8		13		3			4		5			6			9			12	10	11													rnk

()				(()			())				((()))										string

1	-1			1			1 -1			1	-1		-1			1			1 1 -1	-1		-1

0			1			0			1			2			1		2				1			0			1			2				3		2			1

1			1 1 2			2 2 2 1			1 2			3			3 2			1											depth

0			1			2			3			4			5			6			7			8			9	10		11	12	13					[0:#string]
0			1			2			6			7			8			9			3			4	10	12	13	11		5								rank(depth)

0			1			2			7			8		13		3			4		5			6			9			12	10	11													rnkpermute
([0:#string),rank(depth));

()				(()			())				((()))										string

1			1 1 2			2 2 2 1			1 2			3			3 2			1											depth

0			1			2			3			4			5			6			7			8			9	10		11	12	13					[0:#string]
0			1			2			6			7			8			9			3			4	10	12	13	11		5								rank(depth)

0			1			2			7			8		13		3			4		5			6			9			12	10	11											rnk

1			0			7			2			13		8			4			3		6				5		2			9			11		10										ret

()				(()			())				((()))										string

1			1 1 2			2 2 2 1			1 2			3			3 2			1											depth

0			1			2			6			7			8			9			3			4	10	12	13	11		5								rank(depth)
0			1			2			3			4			5			6			7			8			9	10		11	12	13					[0:#string]

0			1			2			7			8		13		3			4		5			6			9			12	10	11											rnk

1			0			7			2			13		8			4			3		6				5		2			9			11		10										ret
interleave(odd_elts(rnk),	 even_elts(rnk))

()				(()			())				((()))										string

1			1 1 2			2 2 2 1			1 2			3			3 2			1											depth

0			1			2			6			7			8			9			3			4	10	12	13	11		5								rank(depth)
0			1			2			3			4			5			6			7			8			9	10		11	12	13					[0:#string]

1 0			7			2	13		8			4			3		6			5		2			9			11		10										ret
0			1				2			7			8		13		3			4		5			6		9		12	10	11											rnk

1			0			7			4			3			6			5			2		13	12	11	10		9			8

()				(()			())				((()))										string

1			1 1 2			2 2 2 1			1 2			3			3 2			1											depth

0			1			2			6			7			8			9			3			4	10	12	13	11		5								rank(depth)
0			1			2			3			4			5			6			7			8			9	10		11	12	13					[0:#string]

1 0			7			2	13		8			4			3		6			5		2			9			11		10										ret
0			1				2			7			8		13		3			4		5			6		9		12	10	11											rnk

1			0			7			4			3			6			5			2		13	12	11	10		9			8 permute(ret,rnk);

()				(()			())				((()))										string

1			0			7			4			3			6			5			2		13	12	11	10		9			8

