
Announcement

Exercise sessions: one room instead of two
● Monday exercises: EC
● Thursday exercises: ML1

Trees
(Weiss 4.1-4.2)

Trees

A tree is a hierarchical data structure built up
from nodes
● At the top is the root node
● Each node can have child nodes
● Which in turn can have their

own children, and so on

Example:
an expression tree

+

3 4 *

5 6

Root node

Child of the
root node

Trees

For a collection of nodes to be a tree:
● There must be exactly one root node
● Two nodes cannot share a child
● Every node must be descended from the root

+

3 4 *

5 6

Not trees

Not a tree: 5 is the
child of two nodes

Not a tree: multiple
roots

Not a tree: some nodes
are not descended from
the root

+

3 4

*

5 6

+

3 4

*

5

Trees recursively

Trees can be defined recursively:
● A tree can be empty
● A non-empty tree consists of a root node together with its

children, which are trees themselves and must not share any
nodes in common

This definition is useful for programming

x
Root node

Children
(also trees)...

Binary trees

Very often we use binary trees, where each node has two children, called
the left and right child

class Node<E> {
 E value;
 Node<E> left, right;
 (optionally) Node<E> parent;
}

class Tree<E> {
 E root;
}

-- If you know functional programming:
data Tree a
 = Node a (Tree a) (Tree a)
 | Nil

Can be null

(left) child
of hamster

parent of gorilla
ancestor of ape

root

leafsiblings

owlowl

hamsterhamster

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

left subtree or branch
of owl

Terminology

descendant of
hamster

apeape

path
node

height = number of levels in tree
size = number of nodes in tree
level = distance to root

height 3
size 4
level 1

owlowl

hamsterhamster

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

A binary tree of size n has a height of between log2 n and n:

A tree of size n is called balanced
if its height is O(log n)
Many tree algorithms have complexity O(height of tree),
so are efficient on balanced trees and less so on
unbalanced trees
Normally: balanced trees good, unbalanced bad!

Balanced trees

Priority queues
(Weiss 6.1-6.4, 6.9)

Priority queues

A priority queue has three operations:
● insert: add a new element
● find minimum: return the smallest element
● delete minimum: remove the smallest element

Similar idea to a stack or a queue, but:
● you get the smallest element out

Alternatively, you give each element a
priority when you insert it; you get out the
smallest-priority element

Applications

A printer queue where certain jobs have higher
priority
● the boss’s documents get highest priority
● after that, shorter documents are printed first
● if two documents have the same priority, the oldest one

is printed first
● or some combination of age and size?

Just need to be able to compute a priority when
adding the job!
Similarly, the scheduler in an operating system
– decide which process to run next

Applications

Sorting a list:
● Start with an empty priority queue
● Add each element of the input list in turn
● Repeatedly find and remove the smallest element
● You get all elements out in ascending order!

If all priority queue operations are
O(log n), this sorting algorithm takes
O(n log n) time

Applications

A simulation – models events happening at a
particular time
● “At 10:00:03 the customer entered the shop”
● “At 10:08:05 the customer got to the checkout”

When an event happens, it can cause more
events to happen in the future
● “When a customer enters the shop, 1 minute later

they pick up some bread”
● “When the cashier finishes scanning the items, 30

seconds later the customer finishes paying”

Applications – simulation

Keep a priority queue of future events
● “At 10:00:03 a person will enter the shop”

Simulator's job: remove earliest event and run
it, then repeat
● In the priority queue, earlier events will be counted as

“smaller” than later events

When we run that event, it can in turn add
more events to the priority queue
● When a customer enters the shop, add an event “the

customer picks up some bread” to the priority queue
at a time of 1 minute later

This lecture

1.
How to make an efficient priority queue

2.
How to design data structures

An inefficient priority queue

Idea 1: implement a priority queue as a
dynamic array
● Insert: add new element to end of array

O(1)
● Find minimum: linear search through array

O(n)
● Delete minimum: remove minimum element

O(n)

Finding the minimum is quite expensive
though.

An inefficient priority queue

Idea 2: use a sorted array
● Insert: insert new element in right place

O(n)
● Find minimum: minimum is first element

O(1)
● Delete minimum: remove first element

O(n)

Finding the minimum is cheap! Yay!
But... insertion got expensive :(

Invariants

By making the array sorted...
● Finding the minimum got easier
● But insertion got harder

“The array is sorted” is an example of a data
structure invariant
● A property picked by the data structure designer, that

always holds
● Insert, find minimum and delete minimum can assume

that the invariant holds (the array is sorted)
● ...but they must make sure it remains sorted

afterwards (preserve the invariant)

More on invariants

Choosing the right invariant is the most
important step in data structure design!
A good invariant adds some extra structure
that:
● makes it easy to get at the data

(the invariant is useful)
● without making it hard to update the data

(it's not too hard to preserve the invariant)

Finding the right invariant takes a lot of
practice!

Binary heaps:
priority queues

implemented using trees

Heaps – representation

A heap implements a priority queue as a tree.
Here is a tree:

This is not yet a heap. We need to add an
invariant that makes it easy to find the
minimum element.

28

29 20

18 8 74 39

37 32 89 66

The heap property

A tree satisfies the heap property if the value
of each node is less than (or equal to) the
value of its children:

Where can we find the smallest element?

8

18 29

37 32 74 89

20 28 39 66

Root node is the
smallest –

can find minimum
in O(1) time

Why the heap property

Why did we pick this invariant? One reason:
● It puts the smallest element at the root of the tree, so we can find

it in O(1) time

Why not just have the invariant “the root node is the
smallest”? Because:
● Trees are a recursive structure – the children of a node are also

trees
● It's then a good rule of thumb to have a recursive invariant –

each node of the tree should satisfy the same sort of property
● In this case, instead of “the root node is smaller than its

descendants”, we pick “each node is smaller than its descendants”

General hint: when using a tree data structure, make each
node have the same invariant

Binary heap

A binary heap is a complete binary tree that
satisfies the heap property:

Complete means that all levels except the
bottom one are full, and the bottom level is
filled from left to right (see above)

8

18 29

37 26 76 32 74

20 28 39 66

Level 0

Level 1

Level 2

Level 3

Why completeness?

There are a couple of reasons why we choose
to have a complete tree:
● It makes sure the tree is balanced
● When we insert a new element, it means there is only

one place the element can go – this is one less design
decision we have to make

There's a third one which we will see a bit
later!

Binary heap invariant

The binary heap invariant:
● The tree must be complete
● It must have the heap property (each node is less than

or equal to its children)

Remember, all our operations must preserve
this invariant

Binary heap or not?

8

18 29

20 28 66

8

18 29

20 28

8

28 29

20 18 39 66

8

8 78

20 95 85

39

Binary heap or not?

8

18 29

20 28 66

8

18 29

20 28

8

28 29

20 18 39 66

8

8 78

20 95 85

39

No:
not complete

No:
not complete

No:
28 > 18Yes

Adding an element to a binary heap

Step 1: insert the element at the next empty
position in the tree

This might break the heap invariant!
In this case, 12 is less than 66, its parent.

8

18 29

37 26 76 32 74 89

20 28 39 66

12

An aside

To modify a data structure with an invariant,
we have to
● modify it,
● while preserving the invariant

Often it's easier to separate these:
● first modify the data structure, possibly breaking the

invariant in the process
● then “repair” the data structure, making the invariant

true again

This is what we are going to do here

Adding an element to a binary heap

Step 2: if the new element is less than its
parent, swap it with its parent

8

18 29

37 26 76 32 74 89

20 28 39 66

12

Adding an element to a binary heap

Step 2: if the new element is less than its
parent, swap it with its parent

The invariant is still broken, since 12 is less
than 29, its new parent

8

18 29

37 26 76 32 74 89

20 28 39 12

66

Adding an element to a binary heap

Repeat step 2 until the new element is
greater than or equal to its parent.

Now 12 is in its right place, and the invariant
is restored. (Think about why this algorithm
restores the invariant.)

8

18 12

37 26 76 32 74 89

20 28 39 29

66

Why this works

At every step, the heap property almost
holds except that the new element might be
less than its parent
After swapping the element and its parent,
still only the new element can be in the
wrong place (why?)

8

18 29

37 26 76 32 74 89

20 28 39 12

66

Why this works

Suppose that z is the new node and we swap it with
its parent:

How do we know that the invariant for y isn’t
broken in the right-hand diagram?
From the left-hand diagram, we must have z < x
(otherwise we wouldn’t do the swap) and x ≤ y
(because the invariant is only broken for z at this
point) – therefore z < y.

x

y z

z

y x

x

y z

Removing the minimum element

To remove the minimum element, we are
going to follow a similar scheme as for
insertion:
● First remove the minimum (root) element from the

tree somehow, breaking the invariant in the process
● Then repair the invariant

Because of completeness, we can only really
remove the last (bottom-right) element from
the tree
● Solution: first swap the root element with the last

element, then remove the last element

Removing the minimum element

The goal: remove the minimum element
First: swap the root and the last element
(66), and then remove the last element

8

18 12

37 26 76 32 74 89

20 28 39 29

66

Removing the minimum element

Step 1: swap the root element and the last
element in the tree, and remove the last
element

The invariant is broken, because 66 is greater
than its children

66

18 12

37 26 76 32 74 89

20 28 39 29

Removing the minimum element

Step 2: if the moved element is greater than
its children, swap it with its least child

(Why the least child in particular?)

66

18 12

37 26 76 32 74 89

20 28 39 29

Removing the minimum element

Step 2: if the moved element is greater than
its children, swap it with its least child

(Why the least child in particular?)

12

18 66

37 26 76 32 74 89

20 28 39 29

Removing the minimum element

Step 3: repeat until the moved element is less
than or equal to its children

12

18 29

37 26 76 32 74 89

20 28 39 66

Sifting

Two useful operations we can extract from all
this
Sift up: if an element might be less than its
parent, i.e. needs “moving up” (used in insert)
● Repeatedly swap the element with its parent

Sift down: if an element might be greater than
its children, i.e. needs “moving down” (used in
removing the minimum element)
● Repeatedly swap the element with its least child

Binary heaps – summary so far

Implementation of priority queues
● Heap property – means smallest value is always at root
● Completeness – means tree is always balanced

Complexity:
● find minimum – O(1)
● insert, delete minimum –

O(height of tree), O(log n) because tree is balanced

Binary heaps are arrays!

A binary heap is really implemented using an
array! 8

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6
8 18 29 20 28 39 66 37 26 76 32 74 89

Possible because
of completeness

property

Child positions

8

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6
8 18 29 20 28 39 66 37 26 76 32 74 89

Parent

L. Child

R. Child

The left child of node i
is at index 2i + 1

in the array...

...the right child
is at index 2i + 2

Child positions

8

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6
8 18 29 20 28 39 66 37 26 76 32 74 89

Parent

L. Child

R. Child

The left child of node i
is at index 2i + 1

in the array...

...the right child
is at index 2i + 2

Child positions

8

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6
8 18 29 20 28 39 66 37 26 76 32 74 89

The left child of node i
is at index 2i + 1

in the array...

...the right child
is at index 2i + 2

Parent

L. Child

R. Child

Parent position

8

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6
8 18 29 20 28 39 66 37 26 76 32 74 89

The parent of node i
is at index (i-1)/2
(rounded down)

Parent

Child

Reminder: inserting into a binary heap

To insert an element into a binary heap:
● Add the new element at the end of the heap
● Sift the element up: while the element is less than its

parent, swap it with its parent

We can do exactly the same thing for a
binary heap represented as an array!

Inserting into a binary heap

Step 1: add the new element to the end of
the array, set child to its index

6

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6
6 18 29 20 28 39 66 37 26 76 32 74 89

13
8

Child

8

Inserting into a binary heap

Step 2: compute parent = (child-1)/2
6

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6
6 18 29 20 28 39 66 37 26 76 32 74 89

13
8

Child

Parent

8

Inserting into a binary heap

Step 3: if array[parent] > array[child],
swap them

6

18 29

37 26 76 32 74 89

20 28 39 8

0 1 2 7 8 9 10 11 123 4 5 6
6 18 29 20 28 39 8 37 26 76 32 74 89

13
66

Child

Parent

66

Inserting into a binary heap

Step 4: set child = parent, parent =
(child 1) / 2– , and repeat

6

18 29

37 26 76 32 74 89

20 28 39 8

0 1 2 7 8 9 10 11 123 4 5 6
6 18 29 20 28 39 8 37 26 76 32 74 89

13
66

66Child

Parent

Inserting into a binary heap

Step 4: set child = parent, parent =
(child 1) / 2– , and repeat

6

18 8

37 26 76 32 74 89

20 28 39 29

0 1 2 7 8 9 10 11 123 4 5 6
6 18 8 20 28 39 29 37 26 76 32 74 89

13
66

66Child

Parent

Binary heaps as arrays

Binary heaps are “morally” trees
● This is how we view them when we design the heap

algorithms

But we implement the tree as an array
● The actual implementation translates these tree

concepts to use arrays

When you see a binary heap shown as a tree,
you should also keep the array view in your
head (and vice versa!)

Min vs max heaps

What we have seen is called a min heap
● can find, delete minimum element

There is a variant called a max heap
● can find, delete maximum element (but not

minimum)

The implementation is totally symmetric
● In fact, if the min heap implementation takes the

comparator as an argument, you can use it as a max
heap just by changing the comparator (as you will
discover doing the lab)

Heapsort

Heapsort uses a heap to sort an array, in-place!
● Convert the array into a max heap, which can be achieved by

“sifting” each element in turn (in linear time!)
● Find and remove the maximum element, store it in the last

element of the array (which is no longer used by the heap)
● Repeat this process until the heap is empty – the elements

have been removed in decreasing order of size and stored
starting from the end of the array and working backwards –
i.e., they are now sorted

Not in the course, but historically important
● First O(n log n) sorting algorithm
● Introsort – quicksort but switches to heapsort if the

recursion depth gets too high (to avoid O(n2) behaviour)

Data structure design

How not to do it

Here is how not to design a data structure:
1. Take the operations you have to implement
2. Think very hard about how to implement them
3. Bash something together that seems to work

Because:
● You will probably have lots of bugs
● You will probably miss the best solution

Data structure design

How to design a data structure:
● Pick a representation

Here: we represent the priority queue by a binary tree
● Pick an invariant

Here: the heap property and completeness

Once you have the right representation and
invariant, the operations often almost “design
themselves”!
● There is often only one way to implement them

You could say...
data structure = representation + invariant

Picking a representation and invariant

How do you know which representation and
invariant to go for?
Good plan: have a first guess, see if the operations
work out, then tweak it
● Priority queues: at first we tried a sorted array, but then

remove minimum needed to delete the first element
(inefficient). Then we tried a tree instead. Putting the smallest
element at the root led us to the heap property. Completeness
allows us to represent the heap as an array for extra efficiency.

● Queues: at first we tried a dynamic array, but there was no way
to efficiently remove items, so we switched to a circular array

Takes practice!

Checking the invariant

What happens if you break the invariant?
● e.g., insert simply adds the new element to the end of

the heap

Answer: nothing goes wrong straight away,
but later operations might fail
● A later find minimum might return the wrong answer!

These kind of bugs are a nightmare to track
down!
Solution: check the invariant

Checking the invariant

Define a method
bool invariant()

that returns true if the invariant holds
in this case, if the heap property holds

Then, in the implementation of every
operation, do

assert invariant();

This will throw an exception if the invariant
doesn't hold!

(Note: in Java, must run program with -ea)

Checking invariants

Writing down and checking invariants will
help you find bugs much more easily
● Very many data structure bugs involve breaking an

invariant
● Even if you don't think about an invariant, if your

data structure is at all fancy there is probably one
hiding there!

● Almost all programming languages support
assertions – use them to check invariants and make
your life easier

Looking back on older designs

We implemented bounded queues by an
array and a pair of indices front and back
● The contents of the queue is the elements between

index front and index back

Once we decide on this representation, there
is only one way to implement the queue!
● Here, “representation” means – what datatype we

use, plus what an instance of that datatype means as
a queue (in this case, what the queue contains)

Today

Main topic was binary heaps, but it was also
about how to design data structures
● The main task is not how to implement the operations, but

choosing the right representation and invariant
● These are the main design decisions – once you choose

them, lots of stuff falls into place
● Understanding them is the best way to understand a data

structure, and checking invariants is a very good way of
avoiding bugs!

But you also need lots of existing data
structures to get inspiration from!
● Many of these in the rest of the course

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

