
Stacks and queues
(Weiss chapter 3)

Stacks

A stack stores a sequence of values
Main operations:
● push(x) – add value x to the stack
● pop() – remove the most-recently-pushed value from the

stack

LIFO: last in first out
● Value removed by pop is always the one that was pushed

most recently

Example:
● push(1); push(2); pop(); push(3); pop(); pop()
● First pop returns 2, second pop returns 3, third pop returns 1

Stacks

Analogy for LIFO: stack of plates
● Can only add or remove plates at the top!
● You always take off the most recent plate

Stacks

More stack operations:
● is stack empty? – is there anything on the stack?
● top() – return most-recently-pushed (“top”) value

without removing it

Example: balanced brackets

Given a string:
“hello (hello is a greetng [sic] {“sic” is used when
quoting a text that contains a typo (or archaic [and
nowadays perhaps wrong] spelling) to show that the
mistake was in the original text (and not introduced
while copying the quote)})”

Check that all brackets match:
● Every opening bracket has a closing bracket
● Every closing bracket has an opening bracket
● Nested brackets match up: no “([)]”!

Algorithm

Maintain a stack of opened brackets
● Initially stack is empty
● Go through string one character at a time
● If we see an opening bracket, push it
● If we see a closing bracket, pop from the stack and

check that it matches
– e.g., if we see a “)”, check that the popped value is a “(“

● When we get to the end of the string, check that the
stack is empty

Algorithm

Maintain a stack of opened brackets
● Initially stack is empty
● Go through string one character at a time
● If we see an opening bracket, push it
● If we see a closing bracket, pop from the stack and

check that it matches
– e.g., if we see a “)”, check that the popped value is a “(“

● When we get to the end of the string, check that
the stack is empty

Check your understanding:
What has gone wrong

if each of the steps
written in bold fails?

(pop fails if stack is empty)

More uses of stacks

The call stack, which is used by the processor
to handle function calls
● When you call a function, the processor records what

it was doing by pushing a record onto the call stack
● When a function returns, the processor pops a record

off the call stack to see what it should carry on doing

Parsing in compilers
Lots of uses in algorithms!

Implementing stacks in Java

Idea: use a dynamic array!
● Push: add a new element to the end of the array
● Pop: remove element from the end of the array

Complexity: all operations have amortised
O(1) complexity
● Means: n operations take O(n) time
● Although a single operation may take O(n) time, an

“expensive” operation is always balanced out by a lot
of earlier “cheap” operations

Abstract data types

You should distinguish between:
● the abstract data type (ADT) (a stack)
● its implementation (e.g. a dynamic array)

Why?
● When you use a data structure you don't care how it's

implemented
● Your code and design will be clearer if you use ADTs
● Most ADTs have many possible implementations

Queues

A queue also stores a sequence of values
Main operations:
● enqueue(x) – add value x to the queue
● dequeue() – remove earliest-added value

FIFO: first in first out
● Value dequeued is always the oldest one that's still in

the queue

Much like a stack – but FIFO, not LIFO

Queues

Like a queue in real life!
● The first to enter the queue is the first to leave

Uses of queues

Controlling access to shared resources in an
operating system, e.g. a printer queue
A queue of requests in a web server
● Generally, message queues are used to send

information between processes in concurrent
programs

Also appears in lots of algorithms
● (Stacks and queues both appear when an algorithm

has to remember a list of things to do)

Implementing queues in Java

What's wrong with this idea?
● Implement the queue as a dynamic array
● enqueue(x): add x to the end of the dynamic array
● dequeue(): remove and return first element of array

To dequeue, we'd have to
copy the entire rest of the

array down one place...
takes O(n) time

Dynamic arrays are no good

A queue containing
A, B, C:

Dequeue removes A:

Moving the rest of the queue into place takes
O(n) time!

A B C

B C

Bounded queues

Let's solve a simpler problem first:
bounded queues
A bounded queue is a queue with a fixed
capacity, e.g. 5
● The queue can't contain more than 5 elements at a

time
● You typically choose the capacity when you create the

queue

Bounded queues

An array, plus two indices back and front

back: where we enqueue the next element
front: where we dequeue the next element

A B C

backfront

Queue contains
A, B, C

Bounded queues

After enqueueing D

array[back] = D; back = back+1

A B C D

backfront

Queue contains
A, B, C, D

Bounded queues

After dequeueing (to get A)

result = array[front]; front = front+1

B C D

backfront

Queue contains
B, C, D

Thinking formally about queues

What is the contents of one of our array-queues?
● Everything from index front to index back-1

If we specify the meaning of the array like this, there is
only one sensible way to implement enqueue and dequeue!
● Before dequeue:

contents is array[front], array[front+1], …, array[back-1]
● After dequeue: array[front] should be gone,

contents is array[front+1], …, array[back-1]
● Only good way to do this is front = front + 1!

Data structure design hint:
don't just think what everything should do!
Work out the meaning of the data structure too.

Bounded queues

After enqueueing E and dequeueing

What's the problem here?

C D E

backfront

Queues as circular buffers

Problem: when back reaches the end of the
array, we can't enqueue anything else
Idea: circular buffer
● When back reaches the end of the array, put the next

element at index 0 – and set back to 0
● Next after that goes at index 1
● front wraps around in the same way

Use all the extra space that's left in the
beginning of the array after we dequeue!

Bounded queues

Try again – after enqueueing E

back wraps around to index 0

C D E

back front

Bounded queues

Now after enqueueing F

Meaning: queue contains everything from
front to back-1 still.
But wrapping around if back < front!
Exercise: phrase this precisely.

F C D E

back front

Queue contains
C, D, E, F

Bounded queues

After dequeueing twice

F E

back front

Queue contains
E, F

Bounded queues

After dequeueing again

front wraps around too!

F

backfront

Queue contains
F

Circular buffers

Basic idea: an array, plus two indices for the
front and back of the queue
● These indices wrap around when reaching the end of

the array, which is what makes it work

Exercise: what sequence of elements does a
circular buffer represent?
The best bounded queue implementation!

Bounded queues

Circular buffers make a fine bounded queue
To make an unbounded queue, let's be
inspired by dynamic arrays
● Dynamic arrays: fixed-size array, double the size

when it gets full
● Unbounded queues: bounded queue, double the

capacity when it gets full

Whenever the queue gets full, allocate a new
queue of double the capacity, and copy the
old queue to the new queue

Reallocation, how not to do it

What's wrong with resizing like this?

F G C D E

back front

F G C D E

back front

Reallocation, how not to do it

What's wrong with resizing like this?

F G C D E

back front

F G C D E

back front

Queue contains
C, D, E,

five blank spaces,
F, G!

Reallocation, how not to do it

Instead, repeatedly dequeue from the old
queue and enqueue into the new queue:

F G C D E

back front

C D E F G

backfront

Summary: queues as arrays

Maintain front and back indexes
● Enqueue elements at back, remove from front

Circular array
● front and back wrap around when they reach the end

Idea from dynamic arrays
● When the queue gets full, allocate a new one of twice the size
● Don't just resize the array – safer to use the queue operations

to copy from the old queue to the new queue

Important implementation note!
● To tell when array is full, need an extra variable to hold the

current size of the queue (exercise: why?)

Double-ended queues

So far we have seen:
● Queues – add elements to one end and remove them

from the other end
● Stacks – add and remove elements from the same end

In a deque, you can add and remove elements
from both ends
● add to front, add to rear
● remove from front, remove from rear

Good news – circular arrays support this
easily

In practice

Your favourite programming language
should have a library module for stacks,
queues and deques
● Java: use java.util.Deque<E> – provides
addFirst/Last, removeFirst/Last methods

● Note: Java also provides a Stack class, but this is
deprecated – don't use it

Stacks, queues, deques – summary

All three extremely common
● Stacks: LIFO, queues: FIFO, deques: generalise both
● Often used to maintain a set of tasks to do later
● Common implementation: stacks are dynamic array, queues

are circular buffers, O(1) amortised complexity

Data structure design hint: always think about
what the representation of a data structure means!
● e.g. “what queue does this circular buffer represent?”
● This is the main design decision you have to make – it drives

everything else
● This lets you design new data structures systematically
● And also understand existing ones

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

