
The Java collections
framework (not on exam)

Java collections framework

Many data structures implemented as classes,
all found in java.util.*
● Lists: ArrayList, LinkedList
● Queues/stacks: ArrayDeque, LinkedList
● Sets/maps: HashSet, HashMap, TreeSet, TreeMap

– also: IdentityHashMap, LinkedHashMap, LinkedHashSet, and more
● PriorityQueue

These classes implement various interfaces
● Collection<E> – a collection of values
● Iterator<E> - for iterating over all values
● List<E> - for sequential and random access

The Collection interface

Most data structures implement Collection, which provides
methods for adding and removing values, checking for
membership of a value etc.:

interface Collection<E> extends Iterable<E> {
 boolean add(E e);
 boolean addAll(Collection<E> c);
 void clear();
 boolean contains(Object o);
 boolean isEmpty();
 boolean remove(Object o);
 boolean removeAll(Collection<?> c);
 int size();
 Object[] toArray();
 ...
}

The List interface

List is used for collections where elements occur in an order (e.g. linked
lists, dynamic arrays):

interface List<E> extends Collection<E> {
 // Add an element at a specific index
 boolean add(int index, E e);
 // Remove the element at a given index
 boolean remove(int index);
 // Get the element at a given index
 E get(int index);
 // Modify the element at a given index
 E set(int index, E element);
 // Return a slice of the list,
 // containing only elements from index “from”
 // to index “to”
 List<E> sublist(int from, int to);
 ...
}

Use of sublist

Iterating through all elements between index
from and index to:
for(E element: list.sublist(from, to)) {
 …
}

Deleting all elements between index from
and index to:

list.sublist(from, to).clear();

This works because sublist returns a view
of the underlying structure, not a copy!

Performance

LinkedList and ArrayList implement all List operations, even
those that have bad performance!
The following examples work even though they are not really
efficient:

int sum(LinkedList<Integer> list) {
 int total = 0;
 // Using a linked list for random access :(
 for (int i = 0; i < list.size(); i++)
 total += list.get(i);
 return total;
}

void deleteFirst(ArrayList<Integer> list) {
 // Deleting from the front of a dynamic array :(
 list.delete(0);
}

The Set interface

The Set interface is just the same as
Collection:

interface Set<E> extends
Collection<E> { }
This is because Collection already contains
set operations: add, remove, contains etc.
The difference is: if a class implements Set, it
should be guaranteed that duplicate
elements are ignored

The Map interface

Important methods of Map<K,V>:
boolean containsKey(K key);
V get(K key);
void put(K key, V value);
V remove(K key);
Set<K> keySet();
Collection<V> valueSet();
Set<Entry<K,V>> entrySet();
// Entry<K,V> has methods
// getKey, getValue, setValue

For example, you can iterate over all keys of a map like so:
HashMap<K, V> map = …;
for (K key: map.keySet()) {
 …
}

Iterators

In Java, you can loop over all kinds of data
structures:

ArrayList<E> list;
for (E x: list) { … }

LinkedList<E> list;
for (E x: list) { … }

HashMap<K, V> map;
for (K x: map.keySet()) { … }

That’s because all these structures implement
Iterable.

Iterator and Iterable

An Iterator is an object that represents a sequence of
items being looped over:
interface Iterator<E> {
 // Return the next item in the iteration
 E next();
 // Return true if the iteration has more elements
 boolean hasNext();
}

Usage: each time you call next(), it gives you the next
element in the sequence
● Once you have gone through all elements in the sequence,
hasNext() will return false

An Iterable has one method for producing an iterator:
Iterator<E> iterator();

Iterator and Iterable

Suppose list is an ArrayList:

ArrayList<Integer> list;

Then the following code loops through all elements of the list:

Iterator<Integer> iter = list.iterator();
while (iter.hasNext()) {
 int x = iter.next();
 …
}

Java lets us write this as a for-loop instead!

for (int x: list) {
 …
}

ListIterator

Classes that implement List support a
souped-up iterator:
● ListIterator<E> iterator();

ListIterator is an extension of Iterator that
supports:
● modifying the current element during iteration
● adding and removing elements at the current position
● going back and forward in the list

So you can use this to do anything you would
want to do with a linked list

Miscellaneous bits and bobs

SortedSet, NavigableSet: extra interfaces that are
implemented for sets that are based on ordering
● SortedSet<E> subSet(E from, E to): return all items

between from and to
● E floor(E e): return the greatest item less than e
● E pollFirst(): remove and return the smallest element
● etc.

SortedMap, NavigableMap: similar but for maps
java.util.Collections: many useful functions
defined in a generic way, e.g., binary search,
sorting, copying, shuffling, etc.

Java collections framework – summary

A large number of data structures, but organised
into relatively few interfaces (Collection, List, etc.)
● Depending on the data structure, not all operations may be

supported efficiently – you should be aware of which
operations each class efficiently supports

Iterators are very handy, use them!
● List and Collection both extend Iterable

To find your away around a particular data
structure class:
● Look at what interfaces it implements and what they are for
● Look for operations that return interesting views on the data

structure

What we haven’t
had time for
(not on exam)

Splay trees

Splay trees are a balanced BST having amortised O(log n)
complexity
● The main operation: splaying moves a given node to the root of the tree

(by doing rotations)
● Insertion: use BST insertion and splay the new node
● Lookup: use BST lookup and splay the closest node
● Deletion: totally different (and much simpler) algorithm than for BSTs!

It turns out that splaying after every operation keeps the
tree balanced enough
Because lookup does splaying, frequently-used values are
quicker to access!
Complexity requires amortised complexity analysis

Amortised complexity analysis

Amortised complexity analysis: how to calculate the amortised
complexity of a data structure?
● In principle: calculate the cost of any sequence of operations
● We did this for dynamic arrays but for more complex structures it gets too hard

One approach: the banker’s method
● Imagine your data structure as a coin-operated machine – every time you put in a

coin it executes one instruction
● In “normal” data structures, number of coins charged for each operation =

number of instructions executed = complexity
● In the banker’s method, we charge extra coins for the cheap operations, and save

them up for later
● When we get to an expensive operation, we use the saved up coins to pay for it
● For dynamic arrays, if we charge an extra coin for each add operation, we save up

enough coins to pay for the resize – we can always charge a constant number of
coins per add and this means we have amortised O(1) complexity

Interesting data structures: splay trees, skew heaps

Probabilistic complexity

Some data structures rely on random choice
● Skip lists, for example
● We saw that hash tables can be modelled this way

There are more data structures like this:
● Treap: binary search tree where the shape is random
● Randomised meldable heap

Typically, you can get fast, simple data
structures – but analysing the performance
(i.e. telling whether it is fast) is difficult!

Real-world performance

Constant factors are important!
Perhaps the most important factor: the processor’s cache
● It takes about 200 clock cycles for the processor to read data from memory
● But recently-accessed parts of memory are stored in the processor’s cache, a

fast memory of ~32KB, and take only ~1 clock cycle to read!

If your program accesses the same or nearby memory
locations frequently (good locality), it will run much faster
because much of the data it reads will be in the cache
● Arrays have much better locality than linked lists: their elements are stored

contiguously in memory
● Accessing the elements of an array in a linear order is especially good – the

processor has special circuitry to detect this, and will start prefetching the
array, reading elements into the cache before your program asks for them

● Quicksort and mergesort have much better locality than heapsort

Real-world performance

“Latency numbers every programmer should know”:
● https://dzone.com/articles/every-programmer-should-know
● L1 cache reference (~ reading one variable), 0.5ns
● Sending a packet USA Europe USA, 150ms→ →

Multiply the times by a billion to get “human scale”:
● Reading from L1 cache, 0.5s (one heart beat)
● Reading from main memory, 100s
● Reading from SSD, 1.7 days
● Reading from hard drive, 4 months!
● Send a packet USA Europe USA, 5 years!→ →

Processors are fast, communication (with networks,
with hard drives, even with RAM) is slow!

Summing up

https://dzone.com/articles/every-programmer-should-know

Basic ADTs

Maps: maintain a key/value relationship
● An array is a sort of map where the keys are array indices

Sets: like a map but with only keys, no values

Queue: add to one end, remove from the other
Stack: add and remove from the same end
Deque: add and remove from either end

Priority queue: add, remove minimum

Implementing maps and sets

A hash table
● Very fast if you choose a good hash function: O(1)
● Unordered: can’t be used to, e.g., find all values in a given range

A binary search tree
● Good performance if you can keep it balanced: O(log n)

A skip list
● Quite simple to implement
● Probabilistic performance only, typically: O(log n)

A trie or radix tree
● Tries: very simple to implement, O(w) performance
● Radix trees: a bit harder, but O(min(w, log n)) performance
● But only for certain types of input data

Implementing queues, stacks,
priority queues

Stacks:
● a dynamic array
● a linked list

Queues:
● a circular array
● a linked list

Priority queues:
● a binary heap
● a leftist heap

Graphs

Very useful in modelling many problems
● A wide variety: directed, undirected, weighted,

unweighted, cyclic, acyclic

But can be a bit hard to program with
● Problem: how to represent? Solution (usually): adjacency

list
● Problem: want to visit nodes, but only visiting each node

once. Solution: DFS
● Problem: want to visit nodes, but only visiting each node

after its neighbours. Solution: topological sort
● Problem: graph is cyclic. Solution: SCCs tell you where

the cycles are

Sorting

Sorted lists are a very low-tech data
structure
● Create by using a sorting algorithm
● Can use binary search to find values efficiently

But they are surprisingly useful
● Sorted lists can implement read-only sets or maps
● Or a priority queue, if you don’t need to interleave

adds and removeMins
● You can also do range queries (“all values between x

and y”), or prefix queries like in tries

What we have studied

The data structures and ADTs above
+ algorithms that work on these data
 structures (sorting, Dijkstra's, etc.)
+ complexity
+ data structure design (invariants, etc.)
You can apply these ideas to your own programs,
data structures, algorithms etc.
● Using appropriate data structures to simplify your programs

+ make them faster
● Taking ideas from existing data structures when you need to

build your own

Data structure design

How to design your own data structures?
● This takes practice!

Study other people's ideas:
● http://en.wikipedia.org/wiki/List_of_data_str

uctures
● Book: Programming Pearls
● Book: The Algorithm Design Manual
● Study your favourite language's standard

library

Data structure design

First, identify what operations the data
structure must support
● Often there's an existing data structure you

can use
● Or perhaps you can adapt an existing one?

Then decide on:
● A representation (tree, array, etc.)
● An invariant

These hopefully drive the rest of the design!

http://en.wikipedia.org/wiki/List_of_data_structures
http://en.wikipedia.org/wiki/List_of_data_structures

Data structure design

Finally, remember the First and Second Rules of
Program Optimisation:

1. Don’t do it.
2. (For experts only!): Don’t do it yet.

Keep things simple!
● No point optimising your algorithms to have O(log n)

complexity if it turns out n ≤ 10
● Profile your program to find the bottlenecks are
● Use big-O complexity to get a handle on performance

before you start implementing it
● Decide which operations need to be efficient and use that

to pick out the correct data structure

Programming Pearls
A classic computer science
book – beautiful solutions
to various programming
problems, many of them
involving data structures
A fun read, not a textbook
It helped me learn how to
think like a computer
scientist
A great book to read next!

The Algorithm Design Manual
An excellent book about
how to use algorithms and
data structures to solve
real programming problems
Lots of good techniques, and
advice on when to use them
“War stories”: actual
problems that the author
needed to solve, false starts,
how they were eventually
solved
E-book available from the
Chalmers library!

The exam

The exam
Tuesday 15th of January,

14:00 – 18:00,
Hörsalsvägen

(re-exams April, August)

The exam

The exam is in English, and you can bring a cheatsheet, one
handwritten A4 piece of paper
6 questions; you get a 3, 4 or 5 (or U) for each question
● Many questions are just right or wrong, where right = 5, wrong = U
● For some questions, you may have to e.g. answer an extra part to get a 5 on that question

– this will be clearly stated

The grade you get is decided as follows:
● To get grade 3 on the exam, you must get a 3 on 3 questions
● To get grade 4 on the exam, you must get a 4 on 4 questions
● To get grade 5 on the exam, you must get a 5 on 5 questions

Best preparation: do the exercises, make sure you understand the labs,
look at the old exams
● Old exams are in Swedish, but I will upload English translations of selected questions –

DIT960/DIT961 exam questions are in English and useful to look at (linked from the
course website)

What you need to know: the following!

Data structures

Dynamic arrays
Queue, stack and deque implementations
Binary search trees, AVL trees, 2-3 trees, AA trees
● not deletion for AVL, 2-3 or AA trees – but still for plain BSTs!
● not B-trees

Binary heaps, leftist heaps
Linked lists, skip lists
Hash tables
● Rehashing, linear probing, linear chaining
● Hash functions: the goal of a good hash function, but not how to construct them

Tries, radix trees, suffix trees
Graphs (weighted, unweighted, directed, undirected)
● Represented using adjacency lists

Algorithms

The algorithms that are used in the
implementation of each data structure
Graph algorithms:
● breadth-first and depth-first search
● applications of DFS: topological sorting, checking

connectedness, SCCs
● Dijkstra's and Prim's algorithms

Insertion sort, quicksort, mergesort, radix sort
● Strategies for choosing the pivot in quicksort – first

element, median-of-three, randomised

Theory

Complexity and big-O notation
● For iterative and recursive functions – basically,

what's in the complexity hand-in
● Also for functions that use standard data structures

and algorithms

Data structure invariants

Typical kinds of question

What is the complexity of the following program?
Perform the following algorithm by hand
● e.g.: Perform Dijkstra’s algorithm on this graph
● e.g. insert a value into this AA tree

Design a data structure that supports the following
operations… or: Implement an algorithm for performing the
following task
● Often: getting a 5 requires a better time complexity
● You can usually answer in pseudocode: don’t need to spell out every last

detail, but a programmer should be able to turn it into code without
having to think

● You can usually use existing data structures and algorithms in your
solutions

See old exams for examples!

Good luck!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

