## Tries, radix trees, suffix trees

## Tries

A trie (pronounced try) is a data structure for representing a set of strings

- It can also be used for a map where the keys are strings
- Or where the key is a list of some kind

It is a kind of tree, but not based on comparisons
Name: pun on retrieval and tree

- Originally pronounced "tree", but now pronounced "try" to avoid confusion with trees...


## Tries

This trie represents the set \{"cat", "cats", "cow", "pig", "pin"\}:

Double circle: cat is in the set (Concatenate all the characters on the path from the root to this node -$c-a-t)$


Edges labelled with characters.

Invariant: no node has two edges with the same label

Invariant:
all leaves are "double circled"

## Tries, more formally

A trie is a tree where edges are labelled with characters

- Represents a set or map of strings
- More generally, keys can be lists; the edges are labelled with single elements
Each node in the tree represents a string
- Which string? Follow the path from the root to the node and concatenate the characters on those edges
Some nodes are marked as corresponding to an element of the set
- In diagrams: a double circle

Invariant:

- Each node has at most one child labelled with a given edge
- All leaf nodes are "double circles" (they represent elements of the set)


## Tries

To check if a string is in the set, just follow the edges, starting from the root!

Double circle:
"cat" is in the set


## Tries

To insert a new string, also follow the edges, making new nodes as you go

- The final node should be a "double circle"



## Tries

Inserting "pi" creates no new nodes, but we mark the final node as a "double circle"


## Tries

To delete a string, we first turn the node into a "single circle"...
Example: deleting "crow"


## Tries

If the node is a leaf, we should remove it. We go up the tree removing any single-circled leaves, which restores the invariant:


## Tries - other neat things we can do

Given a set of strings stored as a trie, we can:

- Find all strings starting with a given prefix (for this reason a trie is often called a prefix tree)
We can take the union or intersection of two tries
- Linear time, but much faster if the two tries are mostly disjoint

If we can iterate over all edges of a node in alphabetical order, we can also:

- Generate a list of strings in dictionary order (i.e., we can use a trie for sorting)
- Find all strings lying between two words in dictionary order (e.g., all words in the set that are after "chicken" but before "pickle" in the dictionary)


## Tries

To find all strings starting with a prefix, just follow the edges along that prefix:


## Tries

To find all strings between "chicken" and "pickle", just follow all edges that lie between them in dictionary order:


## Tries - implementation

How to represent a trie? Not obvious:

- Edges are labelled
- Each node can have many edges

One reasonable choice: each node carries a map from label to child node

- e.g., using a hash table means that following an edge will take $\mathrm{O}(1)$ time "Double circles" are recorded by having a Boolean field in the node object
- If the trie is used as a map, each node object can contain a value Just as with any tree data structure, the trie itself is represented as a reference to the root node Fairly simple to implement!


## Tries - performance

Trie operations take $\mathrm{O}(\mathrm{w})$ time, where w is the length of the string to be inserted

- Independent of the number of strings stored in the trie!
Is this better or worse than BSTs?
- Better if the trie consists of many short strings, because each node will have many children
- Worse if the trie consists of few long strings, because many nodes will only have one child


## Tries - a bad case for performance

Tries containing few long strings perform worse than BSTs
Many nodes have one child!
Long chains of nodes without any branching
Radix trees are a refinement of tries that only introduce nodes when branching is needed


## Radix trees

Idea: label edges with strings rather than characters, and compress chains of nodes into a single string


## Radix trees

Finding values in a radix tree works the same as in a trie

- Important invariant: each node only has one outgoing edge starting with each letter!
- Can also maintain: each non-double-circled node has at least 2 children

Theorem: number of nodes is at most 2 n , where n is size of set!


## Radix trees

Insertion works like in a trie, except that you sometimes have to split an edge into two
E.g. to insert "cabbie", we have to split "bbage" into "bb" and "age":


## Radix trees - implementation

To navigate in a radix tree we need to be able to look up a character and get the outgoing edge starting with that character
So, each node stores its outgoing edges as a map:

- the key is the first character of the label
- the value is a pair (rest of the label, target node)

Apart from that, implementation is similar to tries

- Main other difference: splitting an edge in two


## Suffix trees

A suffix tree is a radix tree that stores all suffixes of a given string

- Example: suffixes of "catinthehat" are: "catinthehat", "atinthehat", "tinthehat", etc.
Why? Can be used to search for all occurrences of given substring in a string
- In a radix tree, you can find all strings that start with a given prefix
- In a suffix tree, you can find all suffixes of a string that start with a given prefix
- This is the same as finding all occurrences of the prefix
- "at" is a substring of "catinthehat" if and only if some suffix of "catinthehat" starts with "at"


## Suffix trees

## A suffix tree for "catinthehat":



To find "at" in "catinthehat", let's check which suffixes start with "at". There are two:

- "atinthehat" $\rightarrow$ at occurs followed by "inthehat"
- "at" $\rightarrow$ at occurs followed by the end of the string

From the length of the suffix we can tell what positions "at" occurs at!

- "catinthehat".length - "atinthehat".length = 1
- "catinthehat".length - "at".length = 9


## Suffix trees, implementation



If implemented carelessly, this takes $\mathrm{O}\left(\mathrm{n}^{2}\right)$ memory!

- Each edge is labelled with a substring of the input string, which may take $O(n)$ memory to store
The trick:
- Remember the original input string
- Label each edge with data that records which substring of the input string it is
One way: a pair (position in input string, length) e.g. "intheh" would become $(3,6)$ - starts at index 3 of "catinthehat" and goes on for 6 characters


## Suffix trees, implementation


(need to also remember that the input string is catinthehat) This takes $\mathrm{O}(\mathrm{n})$ memory! (Recall that a radix tree containing n values has at most 2 n nodes)

## Radix trees for numbers (not on exam)

You can view an integer as a sequence of digits

- e.g. $12345 \rightarrow[1,2,3,4,5]$

So you can use radix trees to store sets of numbers!
Example: $\{123,456,12456\}$


Note: we pad the numbers with leading zeroes when necessary, so that we can do range queries like "find all the numbers between 100 and 500"

## Radix trees for numbers, implementation (not on exam)

We can use several tricks to implement radix trees for numbers super-efficiently!

- Instead of storing the children of each node in a map, store them in an array of size 10 (one for each digit)
- Store strings of digits as a pair (number, length of number) e.g. $[0,1,3]$ becomes $(13,3)$
- Don't use base 10 but (e.g.) base 16, so that we can use e.g. bit-shifting instead of division - in other words, we view an integer as a list of 4 -bit numbers ("hexadecimal digits")


## Radix trees for strings, using radix trees for numbers

If we have a radix tree for lists of 4 -bit numbers we can use it to store strings!
We can view a string as a series of 4-bit numbers:

- Each character has a character code, which is an 8 to 32-bit number (depending on the encoding)
- Chop up the string into a list of character codes e.g. "hello" $\rightarrow$ [104, 101, 108, 108, 111]
- Chop up each character code into 4 -bit pieces e.g. $108=$ (binary) $01101100=[0110,1100]$
- Now you have a series of 4 -bit numbers

For efficiency, radix trees for strings are often implemented this way!

## Summary

Radix trees can be used to implement sets or maps, where the keys are lists

- e.g. strings, or numbers treated as strings of base-16 "digits"
- Requires a map data structure for list elements, often implemented as an array Time taken by each operation is low!
- $O(\min (w, \log n))$ where $w$ is length of string, $n$ is size of set

Tries are simpler to implement, but have $\mathrm{O}(\mathrm{w})$ performance
Both also support: finding strings starting with a given prefix, range queries

- Also union and intersection, which we didn't see

Suffix trees are radix trees which store all suffixes of a string, and can be used to find all occurrences of a given substring

- A suffix tree can be built in $O(n)$ time (which we didn't see)
- Then searching takes $O(\log n)$ worst-case time

