
Linked lists

Linked lists

Linked lists are a data structure designed for
sequential access to a list
● Move forwards and backwards through the list, one

element at a time
● Read or write the element at the current position
● Insert or delete elements at the current position
● all in O(1) time

The downside: getting to a specific position
in the list takes O(n) time
● Linked lists are bad for random access

Singly-linked lists

A singly-linked list is made up of nodes, where each
node contains:
● some data (the node's value)
● a link (reference) to the next node in the list

class Node<E> {
 E data;
 Node<E> next;
}

The list itself is a reference to the first node:

class List<E> {
 Node<E> head;
}

Singly-linked lists

The list [Tom, Dick, Harry] as a linked list:

Tom Dick Harry

tom.next ==
dick

tom.data ==
“Tom”

list.head ==
tom

Finding a node in a linked list

Node<E> find(List<E> list, E item) {
 Node<E> node = list.head;
 while(node != null) {
 if (node.data.equals(item))
 return node;
 else
 node = node.next;
 }
 return null;
}

Start at the
head of the

list

Move through
the list one

node at a time

Modifying a linked list

// Insert item at front of list
void addFirst(E item)
// Insert item after another item
void addAfter(Node<E> node, E item)
// Remove first item
void removeFirst()
// Remove item after another item
void removeAfter(Node<E> node)

Calling list.addFirst(“Ann”)

First create a new list node

Tom Dick Harry

Ann
newNode

Calling list.addFirst(“Ann”)

Then set newNode.next = list.head

Tom Dick Harry

Ann

Calling list.addFirst(“Ann”)

Then set list.head = newNode
Done!

addAfter is very similar

Tom Dick Harry

Ann

Calling list.deleteAfter(tom)

To remove tom.next from the list,
set tom.next = tom.next.next

Tom Dick HarryAnn

tom tom.next tom.next.next

Tom Dick HarryAnn

Calling list.deleteAfter(tom)

Done!

deleteFirst is very similar

Tom Dick HarryAnn

tom tom.next

Header nodes

It's not good to have two versions of each list
operation (e.g. addFirst vs addAfter):
● The API gets twice as big
● Code using the list library will need special cases when it

modifies the front of the list
● Twice as much code to write

Idea: add a header node, a fake node that sits at
the front of the list but doesn't contain any data

We can get rid of addFirst(x) and do
addAfter(headerNode, x) instead

List with header node

If we want to add “Ann” before “Tom”, we can
do addAfter(head, “Ann”)

The header node!

Tom Dick HarryAnn Tom Dick Harry

We could even
get rid of this

list object now

Doubly-linked lists

In a singly-linked list you can only go forwards through
the list:
● If you're at a node, and want to find the previous node, too bad! Only

way is to search forward from the beginning of the list
● This also means we can't delete the current node (would need to

update its predecessor's next field)

In a doubly-linked list, each node has a link to the next and
the previous nodes
You can in O(1) time:
● go forwards and backwards through the list
● insert a node before or after the current one
● modify or delete the current node

The “classic” data structure for sequential access

A doubly-linked list

HarryHarry
DickDick

TomTom
AnnAnn

The list itself
links to the first
and last nodes

list.first = ann
list.last = harry

tom.next = dick
tom.prev = ann

harry.next = null
harry.prev = dick

Insertion and deletion in doubly-
linked lists

Similar to singly-linked lists, but you have to update
the prev pointer too.
To delete Tom in the list below:

dick.prev = ann;
ann.next = dick;

Note that ann = tom.prev, dick = tom.next.
This means that we can do:
tom.next.prev = tom.prev;
tom.prev.next = tom.next;

Tom Dick HarryAnn Tom Dick HarryAnn

Insertion and deletion in doubly-
linked lists, continued

To delete the current node the idea is:
node.next.prev = node.prev;
node.prev.next = node.next;

But there are lots of special cases!
● What if the node is the first node?

This code crashes, since node.prev == null
We also need to update list.first

● What if the node is the last node?
● What if the list only has one element so the node is

both the first and the last node?

Solution: circular linked list!

Tom Dick HarryAnn Tom Dick HarryAnn

The header is
just a normal

list node
head.next = ann
head.prev = harry

ann.prev = head harry.next = head

The list object

Circularly-linked list with header node

An extra header node, “in between” the first
and last elements in the list
Works out quite nicely!
● head.next is the first element in the list
● head.prev is the last element
● you never need to update head
● no node's next or prev is ever null

No special cases in insertion or deletion!

Stacks and lists using linked lists

You can implement a stack using a linked list:
● push: add to front of list
● pop: remove from front of list

You can also implement a queue (even a
deque) using a doubly-linked list:
● enqueue: add to rear of list
● dequeue: remove from front of list

A queue as a singly-linked list

We can implement a queue as a singly-linked
list with an extra rear pointer:

We enqueue elements by adding them to the
back of the list:
● Set rear.next to the new node
● Update rear so it points to the new node

What's the problem with this?

int sum(LinkedList<Integer> list) {
 int total = 0;
 for (int i = 0; i < list.size(); i++)
 // list.get(i) returns the ith element
 // of the list
 total += list.get(i);
 return total;
} list.get is O(n) –

so the whole thing is
O(n2)!

Better!

int sum(LinkedList<Integer> list) {
 int total = 0;
 for (int i: list)
 // list.get(i) returns the ith element
 // of the list
 total += i;
 return total;
}

Remember –
linked lists are for

sequential access only

Linked lists – summary

Provide sequential access to a list
● Singly-linked – can only go forwards
● Doubly-linked – can go forwards or backwards

(disadvantage: more memory use)

Compared to dynamic arrays:
● random access takes O(n) instead of O(1) time
● insert/delete are O(1) – once you find the node
● worse constant factors

(extra memory needed for list nodes, cache-
unfriendly)

Skip lists

Linked lists are bad at random access

We can use a sorted linked list to implement
a set:

But finding an element takes O(n) time
Notice it is only finding the right place in the
list that's slow
● Once you've found the right place to insert/delete,

you can modify the list in O(1) time

3 4 7 9 12 14 15

Basic skip lists

The idea of skip lists: take a linked list and give some
nodes extra forward links which skip further ahead in the
list
● Each node has a level – e.g. a level 3 node has 3 forward links
● Each level skips further forward than the level before
● The bottom level lets you go through the list one by one as in a

normal linked list

Can view this as several linked lists, which skip through
different amounts of the whole list

3 4 7 9 14 15 1812 20 23

Basic skip lists

The idea of skip lists: take a linked list and give some
nodes extra forward links which skip further ahead in the
list
● Each node has a level – e.g. a level 3 node has 3 forward links
● Each level skips further forward than the level before
● The bottom level lets you go through the list one by one as in a

normal linked list

Can view this as several linked lists, which skip through
different amounts of the whole list

3 4 7 9 14 15 1812 20 23

Level 1 node:
1 forward link

Level 3 node:
3 forward links

The level
2 list

Skip list nodes

A node in a skip list has some data and an
array of forward links:

class SkipNode<E> {
E data;
SkipNode<E> links[];

}

The level is the size of this array

9

Basic skip lists

We can find things efficiently in the skip list
by using the extra levels to “skip ahead”
● Start at the highest level of the list
● Go right as far as you can without going past the node

you're looking for
● Then repeat the process one level down

e.g. finding 15:

3 4 7 9 14 15 1812 20 23

Naive skip lists

How many levels should we have?
And what level should each node have?
In naive skip lists:
● the level 1 list contains all nodes
● the level 2 list contains every second node
● the level 3 list contains every fourth node
● each level skips twice as many nodes as the level before

3 4 7 9 14 15 1812 20 23

Naive skip lists

Formally, between any two nodes of level ≥
n+1, there is a node of level n
● Between all level ≥ 2 nodes there is a level 1 node

3 4 7 9 14 15 1812 20 23

Naive skip lists

Formally, between any two nodes of level ≥
n+1, there is a node of level n
● Between all level ≥ 2 nodes there is a level 1 node
● Between all level ≥ 3 nodes there is a level 2 node

3 4 7 9 14 15 1812 20 23

Naive skip lists

Formally, between any two nodes of level ≥
n+1, there is a node of level n
● Between all level ≥ 2 nodes there is a level 1 node
● Between all level ≥ 3 nodes there is a level 2 node
● Between all level ≥ 4 nodes there is a level 3 node

3 4 7 9 14 15 1812 20 23

Naive skip lists

Why arrange the nodes like this?
Because, when searching in the list...
● The highest level skips through half the list
● The next level skips through a quarter
● and so on...

so search takes O(log n) time!

3 4 7 9 14 15 1812 20 23

Naive skip lists

But updating a naive skip list takes O(n)
time! For example, here we have inserted 10,
and the parts of the list that changed are
highlighted in red...

3 4 7 9 12 14 1510 18 20 23

Naive skip lists – the invariant

Each node in the skip list has a level
● Level 1 contains every element of the skip list
● Level 2 contains every 2nd element
● Level 3 contains every 4th element
● Level k contains every 2k-1th element

We can search in O(log n) time
But insertion/delete takes O(n) time
● Have to update too much of the list

Probabilistic skip lists

The solution: probabilistic skip lists!
● Level 1 contains every element of the skip list
● Level 2 contains roughly ½ of the elements
● Level 3 contains roughly ¼ of the elements
● Level k contains roughly 1/2k-1 of the elements

On insertion, we choose the level of the new
node at random, maintaining the distribution
above
● level = 1;
while (coin flip gives heads) level = level + 1;

Probabilistic skip lists

Here is how a probabilistic skip list might
look:

3 4 7 9 12 14 15

Probabilistic skip lists

Inserting 10. First choose the level:
● Level 1: yes
● Level 2: coin flip, heads, yes
● Level 3: coin flip, tails, no

We make it a level 2 node:

3 4 7 9 12 14 15

10

Probabilistic skip lists

Next step: find the predecessor level 2 node
(the greatest level 2 node that's less than the
new node)
● This node should have a

link to the new node

3 4 7 9 12 14 15

10

Probabilistic skip lists

Now we insert the new node into the level 2
list, go down to level 1 and repeat the process

3 4 7 9 12 14 15

10

Probabilistic skip lists

Now we insert the node into the level 1 list,
and we're finished

3 4 7 9 12 14 15

10

Probabilistic skip lists

Done!

3 4 7 9 12 14 1510

Probabilistic skip lists

Deletion: simply remove the node from the
list – e.g., deleting 7, a level 2 node:
● Find level 2 predecessor

3 4 7 9 12 14 1510

Probabilistic skip lists

Deletion: simply remove the node from the
list – e.g., deleting 7, a level 2 node:
● Find level 2 predecessor
● Remove node from level 2

3 4 7 9 12 14 1510

Probabilistic skip lists

Deletion: simply remove the node from the
list – e.g., deleting 7, a level 2 node:
● Find level 1 predecessor

3 4 7 9 12 14 1510

Probabilistic skip lists

Deletion: simply remove the node from the
list – e.g., deleting 7, a level 2 node:
● Find level 1 predecessor
● Remove node from level 1

3 4 7 9 12 14 1510

Probabilistic skip lists

Done!
Question: what happens if you delete all the
nodes except the level 1 nodes?

3 4 9 12 14 1510

Probabilistic skip lists

Deletion is dangerous...
● if you delete all nodes with level > 1, it degenerates to a

linked list!

But, to do that you have to be extremely unlucky!
● When you delete a node, it has ½ chance of being level 2, ¼

chance of being level 4, etc., so you don't break the
probabilistic behaviour

● The probability distribution of levels is the same before and
after

So this is fine, as long as the user of the data
structure can't see the level of each node
● Otherwise the probabilistic argument breaks down!

Probabilistic skip lists – summary

Give each node a random level when you
create it
● Nodes with higher levels allow you to fast forward

through the list

Insertion, deletion, lookup: O(log n) expected
complexity
Code is pretty simple!
Can also be used to implement a sequence
(array-like) datatype

Deterministic skip lists

Probabilistic skip lists are fast, but the lack of
performance guarantee is a bit worrying
● e.g., if an attacker can see the random number seed,

they can break the performance

Deterministic skip lists have O(log n) time
complexity whatever the situation
● Downside: deletion is a bit harder (we skip it)

Inspired by 2-3 trees!

Deterministic skip lists

In a naive skip list, between each level n+1
node, there is only one level n node:

In a deterministic skip list, this can be either
one or two nodes:

Deterministic skip lists

To insert into a deterministic skip list, first
add a level 1 node:

If this creates 3 level n nodes in a row, lift up
the middle one to level n+1:

This might create three level n+1 nodes in a
row, so continue up!

1 2 53 4

1 2 53 4

Insertion example

Inserting 5 into this skip list:

First insert it at level 1:

We've got three level 1 nodes without a level
2 node so promote 4 to level 2

3 4 7 9 12 14 1510 18 20

3 4 7 9 12 14 1510 18 205

Insertion example

4 has been promoted to level 2:

We've got three level 2 nodes (4, 7, 10) without a
level 3 node so promote 7 to level 3:

Done!

3 4 7 9 12 14 1510 18 205

3 4 7 9 12 14 1510 18 205

Relation to 2-3 trees

A deterministic skip list...

...and the corresponding 2-3 tree:
3 4 7 9 12 14 1510 18 20 23

3 4 9

7 10

12

14

18

15 20 23

Level n skip list node =
level n tree node

level 3

level 2

level 1

Deterministic skip lists – summary

Allow either 1 or 2 level n nodes between
each level n+1 nodes
● Can be seen as 2-3 trees, in fact increasing the level is

very similar to splitting the node

What about deletion?
● Algorithm is inspired by 2-3 deletion
● Unfortunately gets rather complicated :(

Still, O(log n) cost for all operations, with
relatively little code
But most skip lists are the probabilistic kind!

Skip lists versus trees

Skip list advantages:
● code is simpler

(especially deletion in the probabilistic version)
● easy to iterate through the members of the list

Disadvantages:
● only has probabilistic behaviour unless you use the

more complicated deterministic version

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

