

Introduction
Data Structures
Nick Smallbone

Course organisation

Lecturer: Nick Smallbone (me)
● nicsma@chalmers.se

Course assistants:
● Nachiappan Valliappan (nacval@chalmers.se)
● Adi Hrustic (hrustic@student.chalmers.se)
● Karin Wibergh (karin.wibergh@gmail.com)
● Oskar Lyrstrand (guslyros@student.gu.se)
● Daniel Willim (willim@student.chalmers.se)
● Robin Lilius-Lundmark (robin.lilius@gmail.com)

Student representatives:
● Adam Oliv, TKDAT (adamoli@student.chalmers.se)
● Hugo Simonsson, TKDAT (hugosi@student.chalmers.se)
● David Hedgren, TKDAT (davhedg@student.chalmers.se)
● Hugo Ölund, TKTEM (ohugo@student.chalmers.se)

Website: http://www.cse.chalmers.se/edu/course/DAT037
● Linked from student portal

mailto:nicsma@chalmers.se
mailto:nacval@chalmers.se
mailto:hrustic@student.chalmers.se
mailto:karin.wibergh@gmail.com
mailto:guslyros@student.gu.se
mailto:willim@student.chalmers.se
mailto:robin.lilius@gmail.com
mailto:adamoli@student.chalmers.se
mailto:hugosi@student.chalmers.se
mailto:davhedg@student.chalmers.se
mailto:ohugo@student.chalmers.se
http://www.cse.chalmers.se/edu/course/DAT037

Course organisation

Lectures twice a week
● Monday 8am (HC4)
● First three weeks: Friday 1pm (HA4)
● After that: Wednesday 8am (HB2)

Examination: exam + labs
● Grade determined by exam grade
● But need to pass labs too!

Labs

Three programming labs and one hand-in
● Do them in pairs (ask a course assistant for permission if you

need to work alone)

Part of the course examination
● Copying of code strictly forbidden!
● Copying of hand-in answers forbidden too!
● But you are welcome to discuss ideas with each other

– If you’re not sure what’s appropriate, ask

Come to the lab sessions if you need help
● Tuesdays 13-15 and 15-17, Thursdays 15-17
● No need to come to all lab sessions!
● Electronic queueing system Waglys (see website)

Exercises

A set of exercises will appear on the website
each week
● Recommended to try them – they’re there for your

benefit!
● Answers will appear at some point

Two exercise sessions per week
● Monday 10am
● Thursday 8am

Where on earth is …?

Exercises and lab sessions are sprawled
across many rooms
● EA, EC, EF, 3358, 3582, 2480
● ML1, ML3, ML16

Directions to all of these on the website!

Slack

There is a course Slack instance (see website)
● Slack is a discussion group/chat room thingy
● There are rooms for discussing the exercises and labs,

finding lab partners, and more
● You can also create your own rooms and have private

conversations with people
● You can easily reach me and the course assistants
● You can ask questions about random things in the

course

Please sign up!

The course book

● Mark Weiss:
Data Structures and
Algorithm Analysis in Java

● Matches the course fairly
closely

● Lots of good exercises
● But you might be able to

manage without it,
especially if you’re good at
Java programming

● Also look at resources
section of website

A FIRST EXAMPLE:
READING A FILE

A simple problem

Here is a program that reads a file into a
string and then prints it out twice:
String result = “”;
Character c = readChar();
while(c != null) {
 result += c;
 c = readChar();
}
System.out.print(result);
System.out.print(result);

A simple problem

Here is a program that reads a file into a
string and then prints it out twice:
String result = “”;
Character c = readChar();
while(c != null) {
 result += c;
 c = readChar();
}
System.out.print(result);
System.out.print(result);

Takes one hour
to read in

War and Peace

The right way to solve it?

Use a StringBuilder instead
StringBuilder result = new StringBuilder();
Character c = readChar();
while(c != null) {
 result.append(c);
 c = readChar();
}
System.out.print(result);
System.out.print(result);

...but: why is there such a big difference?

Takes half a second
to read in

War and Peace

Behind the scenes

A string is basically an array of characters
● String s = “hello” char[] s = {'h','e','l','l','o'}↔

This little line of code...
result = result + c;

is:
● Creating a new array one character longer than before
● Copying the original string into the array, one character at

a time
● Storing the new character at the end
● Setting result to the new array

(See CopyNaive.java)

w o r d + s

w o r d s

1. Create a new array

w o r d

2. Copy the old array, one character at a time

3. Add the new character to the end

Calculating the performance

When we append a character to a string of length i, it copies i
characters
When we read a file of length n, the string changes length like so:
0 1 2 … n-1 n→ → → → →
Hence number of characters copied is:
0 + 1 + 2 + … + (n-1) = n(n-1)/2
(Here is a more back-of-the-envelope calculation:
● The string starts off at length 0, finishes at length n
● ...so average length throughout is n/2
● Total characters copied is roughly

number of characters appended × average length of string
● Which is n × n/2 = n2/2 characters copied)

For “War and Peace”, n = 3600000
so 1800000 × 3600000 = 6,480,000,000,000 characters copied!
No wonder it's slow!

Improving it (take 1)

It's a bit silly to copy the whole array every
time we append a character
Idea: add some slack to the array
● Whenever the array gets full, make a new array that's

(say) 100 characters bigger
● Then we can add another 99 characters before we

need to grow the array again!
● In the implementation, we need a variable which

remembers how much of the array is currently used

(See Copy100.java)

h e l l o w o r l

h e l l o w o r l

d

Add an element:

h e l l o w o r l

d

Add an element:

!

Not good enough

If n = 100k is a multiple of 100, then the array grows in size like
so:
0 100 200 … 100k→ → → →
The total number of characters copied is
0+100+200+...+(100k-100)
= 100(0+1+...+(k-1))
= 100k(k-1)/2
= n(n-100) / 200
Intuitively, we need to grow the array 1/100th as often, so the
total number of characters copied is reduced by a factor of 100
Instead of copying 6,480,000,000,000 characters, we will
copy only (roughly) 64,800,000,000!
That’s still way too many…

Not good enough

If n = 100k is a multiple of 100, then the array grows in size like
so:
0 100 200 … 100k→ → → →
The total number of characters copied is
0+100+200+...+(100k-100)
= 100(0+1+...+(k-1))
= 100k(k-1)/2
= n(n-100) / 200
Intuitively, we need to grow the array 1/100th as often, so the
total number of characters copied is reduced by a factor of 100
Instead of copying 6,480,000,000,000 characters, we will
copy only (roughly) 64,800,000,000!
That’s still way too many…

Brute force idea:
let’s grow the array by
1 million characters.

Let’s not do this! Why not?

Improving it (take 2)

The problem is that growing the array gets
more and more expensive as it gets bigger
Another idea: whenever the array gets full,
double its size
That way, we need to grow the array less and
less often as it gets bigger
Does this work?

Analysing it

Consider the case when we have just expanded the array
● This is the worst case for performance
● The string must contain 2n + 1 characters for some n

The array has grown like so:
1 2 4 8 … 2→ → → → → n 2→ n+1

The number of characters copied is then
1 + 2 + 4 + 8 + … + 2n

= 2n+1 – 1
< 2 × (2n + 1), i.e. twice the length of the string
For “War and Peace”, we copy ~7,200,000 characters. A
million times less than the first version!

Performance – a graph

Performance – a graph

Zoom in on this part

Zoom in!

Zoom in again

Zoom in!

A huge effect from
a small change!

Why does it work really?

The important property:
● After growing the array, the new array is no more than

half full
● Let’s say: the array’s size is 2n, but it contains n

characters
● Before the next “expensive” append, which copies

2n characters, there are n “cheap” appends with no
copying => constant cost of 2 characters copied per step

Also works if we e.g. increase array size by 50%
instead of doubling!
● Can trade off memory use vs execution speed

Dynamic arrays

A dynamic array is like an array, but can be resized –
very useful data structure:
● E get(int i);
● void set(int i, E e);
● void add(E e);

Implementation is just as in our file-reading example:
● An array
● A variable storing the size of the used part of the array
● add copies the array when it gets full, but doubles the size of the

array each time

Called ArrayList in Java

Exercise – also implement void deleteLast();

Back to strings and StringBuilder

String: array of characters
● Fixed size
● Immutable (can't modify once created)

StringBuilder: dynamic array of characters
● Can be resized and modified efficiently

Why can't the String class use a dynamic
array?

DATA STRUCTURES

What is a data structure?

A design for organising the data in a
program, so that particular operations can be
performed efficiently
● An array: get and set
● A dynamic array (ArrayList): get, set, add new

elements, …
● A (hash) set: add, remove, check for membership
● A (hash) map: associate keys with values, look up

keys
● Many hundreds more! Stacks, queues, priority

queues, prefix trees, …

Interface vs implementation

As a user, you are mostly interested in what
operations the data structure supports, not how it
works
Terminology:
● The set of operations is an abstract data type (ADT)

(roughly corresponds to an interface in Java)
● The data structure implements the ADT
● Example: map is an ADT which can be implemented by a

binary search tree, a skip list, a hash table, … (we will come
across all these later)

● Why multiple implementations of the same ADT? Because
they may support slightly different operations or have
different performance characteristics

This course

How to design data structures
● Lectures, exercises, labs

How to reason about them
● Lectures, exercises, hand-in

How to use them and pick the right one
● Labs and exercises

Why learn this?

Why study how data structures work inside?
Can't we just use them?
● Sometimes you need to adapt an existing data

structure, which you can only do if you understand it
● The best way to learn how to design your own data

structures is to study lots of existing ones

Plus, learning how things work is valuable in
itself!

ANOTHER EXAMPLE:
BINARY SEARCH

Searching

Suppose I give you an array, and ask you to
find if a particular value is in it, say 4.

5 3 9 2 8 7 3 2 1 4

The only way is to look at each element in
turn.
This is called linear search.
You might have to look at every element
before you find the right one.

Searching

But what if the array is sorted?

1 2 2 3 3 4 5 7 8 9

Then we can use binary search.

Binary search

Suppose we want to look for 4.
We start by looking at the element half way
along the array, which happens to be 3.

1 2 2 3 3 4 5 7 8 9

Binary search

3 is less than 4.
Since the array is sorted, we know that 4
must come after 3.
We can ignore everything before 3.

1 2 2 3 3 4 5 7 8 9

Binary search

Now we repeat the process.
We look at the element half way along what's
left of the array. This happens to be 7.

1 2 2 3 3 4 5 7 8 9

Binary search

7 is greater than 4.
Since the array is sorted, we know that 4
must come before 7.
We can ignore everything after 7.

1 2 2 3 3 4 5 7 8 9

Binary search

We repeat the process.
We look half way along the array again.
We find 4!

1 2 2 3 3 4 5 7 8 9

Performance of binary search

Binary search repeatedly chops the array in
half
● If we double the size of the array, we need to look at

one more array element
● With an array of size 2n, after n tries, we are down to

1 element
● On an array of size n takes about log2 n tries!

On an array of a billion elements, need to
search 30 elements, compared to a billion for
linear search!

Implementing binary search

Keep two indices lo and hi. They represent the
part of the array to search.

Let mid = (lo + hi) / 2 and look at
a[mid] – then either set lo = mid+1, or hi =
mid-1, depending on the value of a[mid]

1 2 2 3 3 4 5 7 8 9

lo himid

Implementing binary search

Keep two indices lo and hi. They represent the
part of the array to search.

Let mid = (lo + hi) / 2 and look at
a[mid] – then either set lo = mid+1, or hi =
mid-1, depending on the value of a[mid]

1 2 2 3 3 4 5 7 8 9

lo hi mid

hi = mid - 1

ON BRUTE-FORCE
PROGRAMMING

Find all words
starting with a

given string.
Data structure:

prefix tree

Find all documents
containing a
given word.

Data structure:
map or multimap

Plan best route
from A to B.
Algorithm:

Dijkstra’s algorithm
Data structure:

graph (and others)

Say no to brute-force programming!

Small instances of algorithmic problems can
be solved by brute force
● To find all words starting with a given string, check

all words one-by-one
● To find all documents containing a given word, check

all documents one-by-one
● To find the best route from A to B, check all possible

routes

But brute force doesn’t scale to real
problems!

Say no to brute-force programming!

Small instances of algorithmic problems can
be solved by brute force
● To find all words starting with a given string, check

all words one-by-one use a prefix tree
● To find all documents containing a given word, check

all documents one-by-one use a map
● To find the best route from A to B, check all possible

routes use Dijkstra’s algorithm

But brute force doesn’t scale to real
problems!

Instead of brute-force
programming, use

good data structures
and good algorithms!

Big points

Data structures: say no to brute-force programming!
● Instead of relying on brute force, look for better ways to organise your data
● Using the right data structure can turn a program from impractically slow to lightning

fast – speeding up a program by a constant factor is often insignificant compared to using
a better algorithm

● Using the right data structure also makes your program simpler!

Most data structures are based on some simple idea
● e.g., let’s increase the amount of slack space as the array gets bigger
● e.g., let’s sort the data so that it’s quicker to search

We can analyse a program’s performance mathematically
Data structure (class) vs abstract data type (interface)
Lab 1: dynamic arrays and binary search!
Reading: Weiss chapter 1 (skip 1.4), 3.1-3.4 skipping the sections about
linked lists
If you are going to the exercises now, they are in the EDIT building, rooms
EA and EC (you will not be able to do the complexity ones yet)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

