
Parallel Functional Programming
Lecture 2

Mary	Sheeran
(with	thanks to	Simon	Marlow for	use of	slides)

http://www.cse.chalmers.se/edu/course/pfp

Remember nfib

• A	trivial	function that returns the	number of
calls	made—and	makes	a	very large number!

nfib :: Integer -> Integer
nfib n | n<2 = 1
nfib n = nfib (n-1) + nfib (n-2) + 1

n nfib n
10 177
20 21891
25 242785
30 2692537

Sequential

nfib 40

Explicit	Parallelism

par	x	y
• ”Spark”	x	in	parallel with computing y	
– (and	return y)

• The	run-time system	may convert a	spark	into
a	parallel task—or	it	may not

• Starting	a	task	is	cheap,	but not	free

Explicit	Parallelism

x	`par`	y

Explicit	sequencing

• Evaluate x	before y	(and	return y)

• Used to	ensure we get	the	right	evaluation
order

pseq x	y

Explicit	sequencing

• Binds	more tightly than par

x	`pseq`	y

Using par	and	pseq

import Control.Parallel

rfib :: Integer -> Integer
rfib n | n < 2 = 1
rfib n = nf1 `par` nf2 `pseq` nf2 + nf1 + 1
where nf1 = rfib (n-1)

nf2 = rfib (n-2)

Using par	and	pseq

• Evaluate nf1	in	parallel with	(Evaluate nf2
before …)

import Control.Parallel

rfib :: Integer -> Integer
rfib n | n < 2 = 1
rfib n = nf1 `par` (nf2 `pseq` nf2 + nf1 + 1)
where nf1 = rfib (n-1)

nf2 = rfib (n-2)

Looks	promsing

Looks	promsing

What’s happening?

$./NF		+RTS		-N4		-s

-s			to	get	stats

Hah
331160281

…

SPARKS:	165633686	(105	converted,	0	overflowed,	0	dud,	165098698	GC'd,	534883	fizzled)

INIT				time				0.00s		(0.00s	elapsed)
MUT					time				2.31s		(1.98s	elapsed)
GC						time				7.58s		(0.51s	elapsed)
EXIT				time				0.00s		(0.00s	elapsed)
Total			time				9.89s		(2.49s	elapsed)

Hah
331160281

…

SPARKS:	165633686	(105	converted,	0	overflowed,	0	dud,	165098698	GC'd,	534883	fizzled)

INIT				time				0.00s		(0.00s	elapsed)
MUT					time				2.31s		(1.98s	elapsed)
GC						time				7.58s		(0.51s	elapsed)
EXIT				time				0.00s		(0.00s	elapsed)
Total			time				9.89s		(2.49s	elapsed)

converted =	turned into
useful parallelism

Controlling Granularity

• Let’s use a	threshold for	going sequential,	t

tfib :: Integer -> Integer -> Integer
tfib t n | n < t = sfib n
tfib t n = nf1 `par` nf2 `pseq` nf1 + nf2 + 1
where nf1 = tfib t (n-1)

nf2 = tfib t (n-2)

Better

SPARKS:	88	(13	converted,	0	overflowed,	0	dud,	0	GC'd,	75	fizzled)

INIT				time				0.00s		(0.01s	elapsed)
MUT					time				2.42s		(1.36s	elapsed)
GC						time				3.04s		(0.04s	elapsed)
EXIT				time				0.00s		(0.00s	elapsed)
Total			time				5.47s		(1.41s elapsed)

tfib 32	40																							gives

What are	we controlling?
The	division	of	the	work	into possibleparallel tasks		(par)			including

choosing sizeof	tasks
GHC	runtime takes care of	choosingwhich sparks	to	actually evaluate

in	parallel and	of	distribution

Need also to	control order	of	evaluation (pseq)	and	degree of	
evaluation

Dynamicbehaviour is	the	term	used for	how a	pure	function gets	
partitioned,	distributed and	run

Remember,	this	is	deterministicparallelism.	The	answer is	always the	
same!

positive	so	far	(par	and	pseq)

Don’t need to
express	communication
express	synchronisation
deal	with	threads explicitly

BUT

par	and	pseq are	difficult	to	use	L

BUT

par	and	pseq are	difficult	to	use	L

MUST
Pass	an	unevaluated	computation	to	par
It	must	be	somewhat	expensive
Make	sure	the	result	is	not	needed	for	a	bit
Make	sure	the	result	is	shared	by	the	rest	of	the	
program

Even if you get	it	right

Original	code +	par	+	pseq +	rnf etc.
can be	opaque

Separate	concerns

Algorithm

Separate	concerns

Algorithm
Evaluation Strategy

Evaluation Strategies

express	dynamic behaviour independent	of	the	
algorithm

provide	abstractions above par	and	pseq

are	modular and	compositional
(they are	ordinary higher order	functions)

can capture patterns of	parallelism

Papers

H
JFP	1998

Haskell’10

Papers

H
JFP	1998

Haskell’10

351

Papers

H
JFP	1998

Haskell’10

351

85

Papers

H
JFP	1993

Haskell’10

Redesigns strategies

richer set	of	parallelism combinators
Better specs (evaluation order)	
Allows new	forms	of	coordination
generic regular strategies over	data	
structures
speculative parellelism
monads	everywhere J

Presentation	is	about New	Strategies

Slide borrowed from	Simon	Marlow’s CEFP	slides,	with	thanks

Slide borrowed from	Simon	Marlow’s CEFP	slides,	with	thanks

Expressing evaluation order

qfib :: Integer -> Integer
qfib n | n < 2 = 1
qfib n = runEval $ do

nf1 <- rpar (qfib (n-1))
nf2 <- rseq (qfib (n-2))
return (nf1 + nf2 + 1)

Expressing evaluation order

qfib :: Integer -> Integer
qfib n | n < 2 = 1
qfib n = runEval $ do

nf1 <- rpar (qfib (n-1))
nf2 <- rseq (qfib (n-2))
return (nf1 + nf2 + 1)

do this			
spark	qfib (n-1)

"My	argument	could	be	evaluated	in	parallel"

Expressing evaluation order

qfib :: Integer -> Integer
qfib n | n < 2 = 1
qfib n = runEval $ do

nf1 <- rpar (qfib (n-1))
nf2 <- rseq (qfib (n-2))
return (nf1 + nf2 + 1)

do this			
spark	nfib (n-1)

"My	argument	could	be	evaluated	in	parallel""My	argument	could	be	evaluated	in	parallel”

Remember	that	the	argument	should	 be	a	thunk!

Expressing evaluation order

qfib :: Integer -> Integer
qfib n | n < 2 = 1
qfib n = runEval $ do

nf1 <- rpar (qfib (n-1))
nf2 <- rseq (qfib (n-2))
return (nf1 + nf2 + 1)and	then this

Evaluate qfib(n-2)	
and	wait for	
result

"Evaluate	my	argument	and	wait	for	the	result."

Expressing evaluation order

qfib :: Integer -> Integer
qfib n | n < 2 = 1
qfib n = runEval $ do

nf1 <- rpar (qfib (n-1))
nf2 <- rseq (qfib (n-2))
return (nf1 + nf2 + 1)

the	result

Expressing evaluation order

qfib :: Integer -> Integer
qfib n | n < 2 = 1
qfib n = runEval $ do

nf1 <- rpar (qfib (n-1))
nf2 <- rseq (qfib (n-2))
return (nf1 + nf2 + 1)

pull	the	answer
out of	the	
monad

runEval $	do
a	<- rpar (f	x)
b	<- rpar (f	y)
return	(a,b)

runEval $	do
a	<- rpar (f	x)
b	<- rpar (f	y)
return	(a,b)

f		x

f		y

return

time

runEval $	do
a	<- rpar (f	x)
b	<- rseq (f	y)
return	(a,b)

f		x

f		y

return

time

runEval $	do
a	<- rpar (f	x)
b	<- rseq (f	y)
return	(a,b)

f		x

F	y

return

time

Not	completely	satisfactory
Unlikely	to	know	which	one	 to	

wait	for

runEval $	do
a	<- rpar (f	x)
b	<- rseq (f	y)
rseq a
return	(a,b) f		x

F	y

return

time

runEval $	do
a	<- rpar (f	x)
b	<- rseq (f	y)
rseq a
return	(a,b) f		x

F	y

return

time

Choice	between	rpar/rpar and	
rpar/rseq/rseq will	depend	on	
circumstances	(see	PCPH	ch. 2)

What do we have?

The	Evalmonad	raises	the	level	of	abstraction	for	pseq and	par;	it	makes	
fragments	of	evaluation	order	first	class,	and	lets	us	compose	them	
together.	We	should	think	of	the	Evalmonad	as	an	Embedded	Domain-
Specific	Language	(EDSL)	for	expressing	evaluation	order,	embedding	a	
little	evaluation-order	constrained	language	inside	Haskell,	which	does
not	have	a	strongly-defined	evaluation	order.

(from		Haskell	10	paper)

parallel map

parMap :: (a -> b) -> [a] -> Eval [b]
parMap f [] = return []
parMap f (a:as) = do

b <- rpar (f a)
bs <- parMap f as
return (b:bs)

Using our parMap

print	$	sum	$	runEval	$	(foo	 [1..10000]	(reverse	[1..10000]))

SPARKS:	10000	(8194	converted,	1806	overflowed,	0	dud,	 0	GC'd,	0	fizzled)

print $ sum $ runEval $ (parMap foo (reverse [1..10000]))

foo :: Integer -> Integer
foo = \a -> sum [1 .. a]

Using our parMap

print	$	sum	$	runEval	$	(foo	 [1..10000]	(reverse	[1..10000]))

SPARKS:	10000	(8194	converted,	1806	overflowed,	0	dud,	 0	GC'd,	0	fizzled)

print $ sum $ runEval $ (parMap foo (reverse [1..10000]))

#sparks	=	
length of	list

foo :: Integer -> Integer
foo = \a -> sum [1 .. a]

converted														real	parallelism	at	runtime

overflowed											no	room	in	spark	pool

dud																									first	arg of	rpar already	eval’ed

GC’d sparked	expression	unused	
(removed	from	spark	pool)

fizzled																			uneval’d when	sparked,	later
eval’d indepently =>	removed

parallel map

parMap	::	(a	->	b)	->	[a]	->	Eval	[b]
parMap f	[]	=	return []
parMap	f	(a:as)	=	do
b	<- rpar	(f	a)
bs <- parMap f	as
return (b:bs)

+	Captures a	pattern of	parallelism
+	good to	do this	for	standard	higher order	function like	map
+	can easily do this	for	other standard	sequential patterns

BUT

parMap	::	(a	->	b)	->	[a]	->	Eval	[b]
parMap f	[]	=	return []
parMap	f	(a:as)	=	do
b	<- rpar	(f	a)
bs <- parMap f	as
return (b:bs)

- had to	write a	new	version	of	map
- mixes algorithm and	dynamic behaviour

Evaluation Strategies

Raise level of	abstraction

Encapsulate parallel programming idioms	as	
reusable components that	can be	composed

Strategy (as	of	2010)

type Strategy a = a -> Eval a

function

evaluates its input		to	somedegree

traverses its argument	and	uses rpar and	rseq to	express	
dynamicbehaviour /	sparking

returns an	equivalent value in	the	Evalmonad

using

using :: a -> Strategy a -> a

x `using` strat = runEval (strat x)

Program	typically applies the	strategy to	a	structure and	then uses the	returned value,
discarding the	original	one (which is	why the	value had better be	equivalent)

An	almost	identity function that	does someevaluationand	expresses howthat	can
be	parallelised

Basic	strategies

r0 :: Strategy a
r0 x = return x

rpar :: Strategy a
rpar x = x `par` return x

rseq :: Strategy a
rseq x = x `pseq` return x

rdeepseq :: NFData a => Strategy a
rdeepseq x = rnf x `pseq` return x

Basic	strategies

r0 :: Strategy a
r0 x = return x

rpar :: Strategy a
rpar x = x `par` return x

rseq :: Strategy a
rseq x = x `pseq` return x

rdeepseq :: NFData a => Strategy a
rdeepseq x = rnf x `pseq` return x

NO	evaluation

Basic	strategies

r0 :: Strategy a
r0 x = return x

rpar :: Strategy a
rpar x = x `par` return x

rseq :: Strategy a
rseq x = x `pseq` return x

rdeepseq :: NFData a => Strategy a
rdeepseq x = rnf x `pseq` return x

spark		x

Basic	strategies

r0 :: Strategy a
r0 x = return x

rpar :: Strategy a
rpar x = x `par` return x

rseq :: Strategy a
rseq x = x `pseq` return x

rdeepseq :: NFData a => Strategy a
rdeepseq x = rnf x `pseq` return x

evaluate x	
to	WHNF

Basic	strategies

r0 :: Strategy a
r0 x = return x

rpar :: Strategy a
rpar x = x `par` return x

rseq :: Strategy a
rseq x = x `pseq` return x

rdeepseq :: NFData a => Strategy a
rdeepseq x = rnf x `pseq` return x

fully evaluate x

evalList

evalList :: Strategy a -> Strategy [a]
evalList s [] = return []
evalList s (x:xs) = do x’ <- s x

xs’ <- evalList s xs
return (x’:xs’)

evalList

evalList :: Strategy a -> Strategy [a]
evalList s [] = return []
evalList s (x:xs) = do x’ <- s x

xs’ <- evalList s xs
return (x’:xs’)

Takes a	Strategy on	a	and	returns a	Strategy
on	lists	of	a
Building	strategies from	smaller ones

parList

evalList :: Strategy a -> Strategy [a]
evalList s [] = return []
evalList s (x:xs) = do x’ <- s x

xs’ <- evalList s xs
return (x’:xs’)

parList :: Strategy a -> Strategy [a]
parList s = evalList (rpar `dot` s)

parList

evalList :: Strategy a -> Strategy [a]
evalList s [] = return []
evalList s (x:xs) = do x’ <- s x

xs’ <- evalList s xs
return (x’:xs’)

parList :: Strategy a -> Strategy [a]
parList s = evalList (rpar `dot` s)

dot :: Strategy a -> Strategy a -> Strategy a
s2 ‘dot‘ s1 = s2 . runEval . s1

In	reality

evalList :: Strategy a -> Strategy [a]
evalList = evalTraversable

parList :: Strategy a -> Strategy [a]
parList = parTraversable

In	reality

evalList :: Strategy a -> Strategy [a]
evalList = evalTraversable

parList :: Strategy a -> Strategy [a]
parList = parTraversable

The	equivalentof evalList and	of parList are available for	many
data	structures (Traversable).			So	definingparX for	manyX		
is	really easy

=>		generic strategies for	data-orientedparallelism

another list	strategy

parListSplitAt :: Int -> Strategy [a] -> Strategy [a]
-> Strategy [a]

parListSplitAt n stratL stratR

stratRstratL

n par

using yet another list	strategy

parListChunk :: Int -> Strategy a -> Strategy [a]

.	.	.

n
parListChunk n strat

evalList strat

.	.	.

using yet another list	strategy

parListChunk :: Int -> Strategy a -> Strategy [a]

SPARKS:	200	(200	converted,	0	overflowed,	0	dud,	0	GC'd,	0	fizzled)

print $ sum $ runEval $ parMap foo (reverse [1..10000])

Now

print $ sum $
(map foo (reverse [1..10000]) `using` parListChunk 50 rdeepseq)

Before

using yet another list	strategy

parListChunk :: Int -> Strategy a -> Strategy [a]

SPARKS:	200	(200	converted,	0	overflowed,	0	dud,	0	GC'd,	0	fizzled)

print $ sum $ runEval $ parMap foo (reverse [1..10000])

Now

print $ sum $
(map foo (reverse [1..10000]) `using` parListChunk 50 rdeepseq)

Before

Remember not	to	be	a	control freak,	though.
Generating plentyof	sparks	gives	the	
runtime the	freedom	it	needs to	make	good
choices (=>	Dynamic partitioning for	free)

using is	not	always what we need

• Trying to	pull	apart	algorithm and	
coordination in	qfib (from	earlier)	doesn’t
really give a	satisfactory answer (see Haskell
10	paper)

(If the	worst comes to	the	worst,	one can get	
explict control of	threads etc.	in	concurrent
Haskell,	but determinism	is	lost…)

Divide and	conquer

Capturing patterns of	parallel computation is	a	
major	strong	point of	strategies

D&C	is	a	typical example (see also parBuffer,	
parallel pipelines	etc.)

divConq :: (a -> b)
-> a
-> (a -> Bool)
-> (b -> b -> b)
-> (a -> Maybe (a,a))
-> b

function on	base cases
input
par	threshold reached?
combine
divide
result

Divide and	Conquer
divConq f arg threshold conquer divide = go arg

where
go arg =

case divide arg of
Nothing -> f arg
Just (l0,r0) -> conquer l1 r1 ‘using‘ strat
where

l1 = go l0
r1 = go r0
strat x = do r l1; r r1; return x

where r | threshold arg = rseq
| otherwise = rpar

Separates		algorithmand	strategy
A	first	inkling that	one can probably do interesting things by	programmingwith

strategies

Skeletons

• encode fixed set	of	common coordination patterns
and	provide	efficient parallel implementations (Cole,	
1989)

• Popular	in	both functional and	non-functional
languages.	See particularly Eden	(Loogen et	al,	2005)

A	difference:	one can /	should roll	ones own strategies

Strategies:	summary
+		elegant	redesign by	Marlowet	al			(Haskell 10)

+		better separation	of	concerns

+		Laziness is	essential for	modularity

+			generic strategies for	(Traversable)	data	structures

+			Marlow’s bookcontain a	nice kmeans example.	Read	it!

- Having to	think so	much aboutevaluation order	is	worrying!	
Laziness is	not	only good here.		(Cue	the	Par	Monad	Lecture!)

Strategies:	summary

Algorithm
Evaluation Strategy

Better visualisation

Better visualisation

Better visualisation

Simon	Marlow’s	landscape	for	parallel	
HaskellLandscape&

•  Parallel&
–  par/pseq&
–  Strategies&
–  Par&Monad&
–  Repa&
–  Accelerate&
–  DPH&

•  Concurrent&
–  forkIO&
–  MVar&
–  STM&
–  async&
–  Cloud&Haskell&

Haxl?&

1

3
2

4

In	the	meantime

Read	papers	and	PCPH
Start	on	Lab	A	(due	11.59	April	3)
Exercise	class	tomorrow	at	15.15	(EC)
Note	office	hours	of	TAs

Markus,	tues 10-11
Anton,	fri 13.15-14.15

Use	them!

