
Parallel Functional Programming
Lecture 3

Mary	Sheeran
with thanks to	Simon	Marlow for	use of slides
and	to Koen Claessen for	the	guest appearance

http://www.cse.chalmers.se/edu/course/pfp

par	and	pseq

MUST
Pass	an	unevaluated	computation	to	par
It	must	be	somewhat	expensive
Make	sure	the	result	is	not	needed	for	a	bit
Make	sure	the	result	is	shared	by	the	rest	of	the	
program

par	and	pseq

MUST
Pass	an	unevaluated	computation	to	par
It	must	be	somewhat	expensive
Make	sure	the	result	is	not	needed	for	a	bit
Make	sure	the	result	is	shared	by	the	rest	of	the	
program

Demands	an	operational	understanding	 of	program	execution

Eval monad	plus	Strategies

Eval monad	enables	expressing	ordering	between	
instances	of	par	and	pseq

Strategies	separate	algorithm	from	parallelisation
Provide	useful	higher	level	abstractions
But	still	demand	an	understanding	of	laziness

Haskell’11 96

Builds	on	Koen’s paper

JFP’99	 																																																		Call	this	PMC

the	Par	Monad

Our	goal	with	this	work	is	to	find	a	parallel	programming	model
that	is	expressive	enough	to	subsume	Strategies,	robust	enough	to
reliably	express	parallelism,	and	accessible	enough	that	non-expert
programmers	can	achieve	parallelism	with	little	effort.

Slide	by	Simon	Marlow

IVar

a	write-once	mutable	reference	cell

supports	two	operations:	put and	get

put assigns	a	value	to	the	IVar,	and	may	only	be	
executed	once	per	Ivar									
Subsequent	puts	are	an	error

get waits	until	the	IVar has	been	assigned	a	value,	and	
then	returns	the	value

the	Par	Monad

Implemented	as	a	Haskell	library
surprisingly	little	code!
includes	a	work	stealing	scheduler
You	get	to	roll	your	own	schedulers!

Programmer	has	more	control	than	with	Strategies
=>	less	error	prone?

Good	performance	(comparable	to	Strategies)
particularly	if	granularity	 is	not	too	small

Slide	by	Simon	Marlow

spawn :: NFData a => Par a -> Par (IVar a)
spawn p = do

i <- new
fork (do x <- p; put i x)
return i

Slide	by	Simon	Marlow

Slide	by	Simon	Marlow

parMapM :: NFData b => (a -> Par b) -> [a] -> Par [b]
parMapM f as = do

ibs <- mapM (spawn . f) as
mapM get ibs

search :: (partial -> Maybe solution)
-> (partial -> [partial])
-> partial
-> [solution]

See	PCPH	ch. 4

search :: (partial -> Maybe solution)
-> (partial -> [partial])
-> partial
-> [solution]

search finished refine emptysoln = generate emptysoln
where generate partial
| Just soln <- finished partial = [soln]
| otherwise = concat (map generate (refine partial))

parsearch :: NFData solution
=> (partial -> Maybe solution)
-> (partial -> [partial])
-> partial
-> [solution]

parsearch finished refine emptysoln
= runPar $ generate emptysoln
where
generate partial

| Just soln <- finished partial = return [soln]
| otherwise = do

solnss <- parMapM generate (refine partial)
return (concat solnss)

needs	granularity	control

parsearch :: NFData solution
=> Int
-> (partial -> Maybe solution) -- finished?
-> (partial -> [partial]) -- refine a solution
-> partial -- initial solution
-> [solution]

parsearch maxdepth finished refine emptysoln
= runPar $ generate 0 emptysoln
where
generate d partial | d >= maxdepth

= return (search finished refine partial)
generate d partial

| Just soln <- finished partial = return [soln]
| otherwise = do

solnss <- parMapM (generate (d+1)) (refine partial)
return (concat solnss)

parMapM :: NFData b => (a -> Par b) -> [a] -> Par [b]
parMapM f as = do

ibs <- mapM (spawn . f) as
mapM get ibs

Slide	by	Simon	Marlow

Slide	by	Simon	Marlow

Slide	by	Simon	Marlow

Slide	by	Simon	Marlow

Slide	by	Simon	Marlow

Slide	by	Simon	Marlow

Slide	by	Simon	Marlow

Slide	by	Simon	Marlow

Slide	by	Simon	Marlow

Slide	by	Simon	Marlow

Put

sched state (Put (IVar v) a t) = do
cs <- modifyIORef v $ \e -> case e of

Full _ -> error "multiple put"
Blocked cs -> (Full a, cs)

let state’ = map ($ a) cs ++ state
sched state’ t

modifyIORef :: IORef a -> (a -> (a,b)) -> IO b

Put

sched state (Put (IVar v) a t) = do
cs <- modifyIORef v $ \e -> case e of

Full _ -> error "multiple put"
Blocked cs -> (Full a, cs)

let state’ = map ($ a) cs ++ state
sched state’ t

modifyIORef :: IORef a -> (a -> (a,b)) -> IO b

Wake	up	blocked	threads
Add	them	to	work	pool

runPar

Applies	 		sched to			empty	list						and					“the	main	thread”
Uses	an	Ivar	to	get	the	result	out

Answer	is	either	the	contents	of	 the	full	 Ivar	or	an	error	(no	 result)

Parallel	scheduler

One	scheduler	thread	per	core,	each	with	a	
work	pool

When	work	pool	dries	up	attempts	to	steal	from	
other	work	pools

success

When	work	pool	dries	up	attempts	to	steal	from	
other	work	pools

If	no	work	to	be	found,	worker	thread	becomes	
idle	(and	is	added	to	shared	list	of	idle	workers)

A	worker	thread	that	creates	a	new	work	item	
wakes	up	one	of	these	idle	workers

When	all	work	pools	are	empty,	computation	is	
complete	and	runPar returns

Slide	by	Simon	Marlow

Slide	by	Simon	Marlow

Par	monad

Builds	on	old	ideas	of	dataflow	machines	(hot	
topic	in	the	70s	and	80s,	reappearing	in	
companies	like	Maxeler)

Express	parallelism	by	expressing	data	
dependencies	or	using	common	patterns	(like	
parMapM)
Very	good	match	with	skeletons!

Large	grained,	irregular	parallelism	is	target

Par	monad	compared	to	Strategies

Separation	of	function	and	parallelisation done	
differently
Eval monad	and	Strategies	are	advisory
Eval monad	well	integrated	with	Threadscope

Par	monad	and	Strategies	tend	to	achieve	similar	
performance
But	remember
runPar is	expensive	and	runEval is	free!

Par	monad	compared	to	Strategies

Par	monad	does	not	support	speculative	parallelism	
as	Stategies do

Par	monad	supports	stream	processing	pipelines	
well
Strategies	appropriate	if	you	are	producing	a	lazy	
data	structure

Note:	Par	monad	and	Strategies	can	be	combined…

Par	Monad	easier	to	use	than	par?

fork	creates	one	parallel	task
Dependencies	between	tasks	represented	by	Ivars
No	need	to	reason	about	laziness

put	is	hyperstrict by	default

Final	suggestion	in	Par	Monad	paper	is	that	maybe	par	
is	suitable	for	automatic	parallelisation

From	PCPH

Unfortunately,	right	now	there’s	no	way	to	
generate	a	visual	representation	of	the	dataflow	
graph	from	some Par monad	code,	but	hopefully	
in	the	future	someone	will	write	a	tool	to	do	
that.

Next

Continue	working	on	Lab	A	(due	11.59	April	3)

Erlang starts	on	Thursday

Friday	15.15	EC				Exercise	class,	Erlang intro,	vital	info	
for	lab

