
Programming	Accelerators

Ack:	Obsidian	is	developed	by	Joel	Svensson
thanks	to	him	for	the	black	slides	and	ideas

github.com/svenssonjoel/Obsidian
for	latest	version	of	Obsidian

Developments	in	computer	architecture	place	
demands	on	programmers!

3	main	challenges

Power	wall

ILP	wall

Memory	wall

Power	wall

More	capable	processors	use	more	power

Solution

Make	processors	as	collections	of	different	
specialised (and	gen.	purpose)	compute	
capabilities.			Example	ARM	big.LITTLE

Turn	some	of	them	off

Instuction Level	Parallelism	Wall

Finding	ILP	and	increasing	frequency	out	of	
steam

Solution

More	but	simpler	cores
Accelerators

Memory	Wall

Processor	performance	and	memory	
performance	diverging

Solution

Larger	caches
More	complicated	memory	hierarchies
Programmer	controlled	scratchpad	memories

Memory	Wall

Processor	performance	and	memory	
performance	diverging

Solution

Larger	caches
More	complicated	memory	hierarchies
Programmer	controlled	scratchpad	memories

Note	Chalmers	expertise	here!
McKee								Stenström

Summary

Programming	gets	harder

Heterogeneity	is	everywhere!

Node

An HPC node today:
● Processors (traditional CPUs)
● GPUs
● And/Or Xeon PHI

Upcoming:
● Field Programmable Gate Arrays

○ Xilinx Zynq Ultrascale+
○ Xeon + FPGA

CUDA	programming	model

Single	Program	Multiple	Threads

Kernel	=	Function	run	N	times	by	N	threads

Hierarchical	thread	groups

Associated	memory	hierarchy

Image	from	http://docs.nvidia.com/cuda/cuda-c-programming-guide/#memory-hierarchy

The	flow	of	kernel	execution

Initialize/acquire	the	device	(GPU)

Allocate	memory	on	the	device	(GPU)

Copy	data	from	host	(CPU)	to	device	(GPU)

Execute	the	kernel	on	the	device	(GPU)

Copy	result	from	device	(GPU)	to	host	(CPU)

Deallocate memory	on	device	(GPU)

Release	device	(GPU)

Hierarchy

Level											Parallelism				Shared	Memory								Thread	synchronisation

Thread	 No	 Yes	 No
Warp	 Yes	 Yes	 Lock-step	execution
Block	 Yes	 Yes	 Yes
Grid	 Yes	 No	 No

Memory	access	patterns
Some	patterns	of	global	memory	access	can	be	
coalesced.	Others	cannot.	Missing	out	on	coalescing	
ruins	performance!

Global	memory	works	best	when	adjacent	threads	
access	a	contiguous	block

For	shared	memory,	successive	32	bit	words	are	in	
different	banks.	Multiple	simultaneous	access	to	a	
bank	=	bank	conflict =	another	way	to	ruin	
performance.	Conflicting	accesses	are	serialised.

Thread	ID	is	usually	built	from

blockIdx Block	index	within	a	grid				 uint3

blockDim Dimension	of	the	block dim3

threadIdxThread	index	within	a	block uint3

We’ll	use	linear	blocks	and	grids	(easier	to	think	about)

For	more	info	about	CUDA	see	https://developer.nvidia.com/gpu-computing-webinars
esp.	the	2010	intro	webinars

gridDim gives	the	dimensions	of	the	grid	(the	number	of	blocks	in	each	dimension)

another	CUDA	kernel

__global__ void inc(float *i, float *r){
unsigned int ix = blockIdx.x * blockDim.x + threadIdx.x;
r[ix] = i[ix]+1;

}

Host	code
#include <stdio.h>
#include <cuda.h>
#define BLOCK_SIZE 256
#define BLOCKS 1024
#define N (BLOCKS * BLOCK_SIZE)

int main(){
float *v, *r;
float *dv, *dr;

v = (float*)malloc(N*sizeof(float));
r = (float*)malloc(N*sizeof(float));

//generate input data
for (int i = 0; i < N; ++i) {

v[i] = (float)(rand () % 1000) / 1000.0; }

/* Continues on next slide */

Host	code
cudaMalloc((void**)&dv, sizeof(float) * N);
cudaMalloc((void**)&dr, sizeof(float) * N);

cudaMemcpy(dv, v, sizeof(float) * N,cudaMemcpyHostToDevice);

inc<<<BLOCKS, BLOCK_SIZE,0>>>(dv,dr);

cudaMemcpy(r, dr, sizeof(float) * N, cudaMemcpyDeviceToHost);

cudaFree(dv);
cudaFree(dr);

for (int i = 0; i < N; ++i) {
printf("%f ", r[i]); }

printf("\n");

free(v);
free(r);

}

Haskell	EDSLs	for	GPU	programming

Accelerate																																															Obsidian

Accelerate
Get	acceleration	from	your	GPU	by	writing	familiar	
combinators

Hand	tuned	skeleton	templates

Compiler	cleverness	to	fuse	and	memoise the	
resulting	kernels

Leaves	a	gap	between	the	programmer	and	the	
GPU	(which	most	people	want)

See	Chap.	6	of	PCPH	for	description	of	accelerate-cuda
However,	it	will	be	replaced	by	accelerate-llvm-ptx

slidespaper

Optimising Purely Functional GPU Programs
Trevor L. McDonell, Manuel M. T. Chakravarty, Gabriele Keller, and Ben Lippmeier.
ICFP’13

Converting Data-Parallelism to Task-Parallelism by Rewrites
Bo Joel Svensson, Michael Vollmer, Eric Holk, Trevor L. McDonell, and Ryan R. Newton
Workshop	on	Functional	High	Performance	Computing	(FHPC’15)

paper

Note					Array	shapes	just	like	in	Repa

See	many	interesting	papers,	installation	instructions	etc on	the	Accelerate	home	page

Obsidian

Can	we	bring	FP	benefits	to	GPU	programming,	
without	giving	up	control	of	low	level	details?

Obsidian

Can	we	bring	FP	benefits	to	GPU	programming,	
without	giving	up	control	of	low	level	details?

Assumptions
To	get	really	good	performance	from	a	GPU,	one	
must	control

use	of	memory
memory	access	patterns
synchronisation points
where	the	boundaries	of	kernels	are
patterns	of	sequential	code	(control	of	task	size)

Vital	to	be	able	to	experiment	with	variants	on	a	
kernel	easily

Assumptions

To	get	really	good	performance	from	a	GPU,	one	
must	control

use	of	memory
memory	access	patterns
where	the	boundaries	of	kernels	are
patterns	of	sequential	code

Vital	to	be	able	to	experiment	with	variants	on	a	
kernel	easily

We	aim	to	give	the	programmer this	control

We	avoid	compiler	cleverness!

Cost	model	should	be	entirely	transparent

Building	blocks
Embedded	DSL	in	Haskell

Pull	and	push arrays

Use	of	types	to	allow	“hierarchy-polymorphic”	functions	
(Thread,	Warp,	Block,	Grid)

A	form	of	virtualisation to	remove	arbitrary	limits	like	
max	#threads	per	block

Memory	layout	is	taken	care	of	(statically)

Building	blocks

Embedded	DSL	in	Haskell

Pull	and	push arrays

Use	of	types	to	allow	“hierarchy-polymorphic”	
functions	(Thread,	Warp,	Block,	Grid)

A	form	of	virtualisation to	remove	arbitrary	limits	
like	max	#threads	per	block

Delayed	arrays
See	Pan	by	Elliot		http://conal.net/pan/

Or	even	Compilation	and	Delayed	Evaluation	in	APL,	Guibas	and	
Wyatt,	POPL'78

Building	blocks

Embedded	DSL	in	Haskell

Pull	and	push arrays

Use	of	types	to	allow	“hierarchy-polymorphic”	
functions	(Thread,	Warp,	Block,	Grid)

A	form	of	virtualisation to	remove	arbitrary	limits	
like	max	#threads	per	block

A	new	array	representation	due	to	Claessen
will	come	back	to	this

incLocal :: SPull EWord32 -> SPull EWord32
incLocal arr = fmap (+1) arr

increment :: DPull (SPull EWord32) -> DPush Grid EWord32
increment arr = asGridMap body arr
where body a = push (incLocal a)

performInc :: IO ()
performInc
= withCUDA $

do
kern <- capture 64 (increment . splitUp 256)

useVector (V.fromList [0..1023]) $ \i ->
withVector 1024 $ \o ->
do
fill o 0
o <== (1,kern) <> i

r <- copyOut o
lift $ putStrLn $ show r

main :: IO ()
main = performInc

performInc :: IO ()
performInc
= withCUDA $

do
kern <- capture 64 (increment . splitUp 256)

useVector (V.fromList [0..1023]) $ \i ->
withVector 1024 $ \o ->
do
fill o 0
o <== (1,kern) <> i

r <- copyOut o
lift $ putStrLn $ show r

main :: IO ()
main = performInc

Threads	per	block
Array	elements	per	block

#include <stdint.h>

extern "C” __global__ void gen0(uint32_t *input0, uint32_t n0,
uint32_t *output1)

{
uint32_t bid = blockIdx.x;
uint32_t tid = threadIdx.x;
for (int b = 0; b < n0 / 256U / gridDim.x; ++b) {

bid = blockIdx.x * (n0 / 256U / gridDim.x) + b;
for (int i = 0; i < 4; ++i) {

tid = i * 64 + threadIdx.x;
output1[bid * 256U + tid] = input0[bid * 256U + tid] + 1U;

}

tid = threadIdx.x;
bid = blockIdx.x;
__syncthreads();

}
bid = gridDim.x * (n0 / 256U / gridDim.x) + blockIdx.x;
if (blockIdx.x < n0 / 256U % gridDim.x) {

for (int i = 0; i < 4; ++i) {
tid = i * 64 + threadIdx.x;
output1[bid * 256U + tid] = input0[bid * 256U + tid] + 1U;

}
tid = threadIdx.x;

}
bid = blockIdx.x;
__syncthreads();

}

*Main>	performInc
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49
,	
….

,913,914,915,916,917,918,919,920,921,922,923,924,925,926,927,928,
929,930,931,932,933,934,935,936,937,938,939,940,941,942,943,944,9
45,946,947,948,949,950,951,952,953,954,955,956,957,958,959,960,96
1,962,963,964,965,966,967,968,969,970,971,972,973,974,975,976,977
,978,979,980,981,982,983,984,985,986,987,988,989,990,991,992,993,
994,995,996,997,998,999,1000,1001,1002,1003,1004,1005,1006,1007,
1008,1009,1010,1011,1012,1013,1014,1015,1016,1017,1018,1019,102
0,1021,1022,1023,1024]

Obsidian	Pull	arrays

incLocal :: SPull EWord32 -> SPull EWord32
incLocal arr = fmap (+1) arr

type SPull = Pull Word32

Static		size	Word32															=			Haskell	value	known	at	compile	time

Immutable

Obsidian	Pull	arrays
data Pull s a = Pull {pullLen :: s,

pullFun :: EWord32 -> a}

length	and	function	from	index	to	value,	the	read-function
see	Elliott’s	Pan

type SPull = Pull Word32
type DPull = Pull EWord32

A	consumer	of	a	pull	array	needs	to	iterate	over	those	indices	of	the	array
it	is	interested	in	and	apply	the	pull	array	function	at	each	of	them.	

Fusion	for	free

fmap f (Pull n ixf) = Pull n (f . ixf)

Example

incLocal arr = fmap (+1) arr

This	says	what	the	computation	should	do

How	do	we	lay	it	out	on	the	GPU??

incPar :: Pull EWord32 EWord32 -> Push Block EWord32 EWord32
incPar = push . incLocal

push converts	a	pull	array	to	a	push	array	and	pins
it	to	a	particular	part	of	the	GPU	hierarchy

No	cost	associated		with			pull	to	push	conv.

Key	to	getting	fine	control	over	generated	code

GPU	Hierarchy	in	types

data Thread
data Step t

type Warp = Step Thread
type Block = Step Warp
type Grid = Step Block

GPU	Hierarchy	in	types

-- | Type level less-than-or-equal test.
type family LessThanOrEqual a b where

LessThanOrEqual Thread Thread = True
LessThanOrEqual Thread (Step m) = True
LessThanOrEqual (Step n) (Step m) = LessThanOrEqual n m
LessThanOrEqual x y = False

type a *<=* b = (LessThanOrEqual a b ~ True)

Program	data	type
data Program t a where

Identifier :: Program t Identifier

Assign :: Scalar a
=> Name
-> [Exp Word32]
-> (Exp a)
-> Program Thread ()

. . .

-- use threads along one level
-- Thread, Warp, Block.

ForAll :: (t *<=* Block) => EWord32
-> (EWord32 -> Program Thread ())
-> Program t ()

. . .

Program	data	type
seqFor :: EWord32 -> (EWord32 ! Program t ()) -> Program t ()

. . .

Sync :: (t *<=* Block) => Program t ()

. . .

Program	data	type

. . .

Return :: a -> Program t a
Bind :: Program t a -> (a -> Program t b) -> Program t b

instance Monad (Program t) where
return = Return
(>>=) = Bind

See
Svenningsson,	Josef,	&	Svensson,	Bo	Joel.	(2013).	Simple	and	Compositional	Reification	
of	Monadic	Embedded	Languages.	ICFP	2013.

Obsidian	push	arrays

data Push t s a = Push s (PushFun t a)

The	general	idea	of	push	arrays	is	due	to	Koen Claessen

Length		type																							a	function	that	generates	a	loop	at	a	particular	level
of	the	hierarchy

Program		type

Obsidian	push	arrays

-- | Push array. Parameterised over Program type and size type.

data Push t s a = Push s (PushFun t a)

type PushFun t a = Writer a -> Program t ()

Push	array	only	allows	bulk	request	to	push	ALL	elements	via	a	writer	function

The	general	idea	of	push	arrays	is	due	to	Koen Claessen

Obsidian	push	arrays

-- | Push array. Parameterised over Program type and size type.

data Push t s a = Push s (PushFun t a)

type PushFun t a = Writer a -> Program t ()
type Writer a = a -> EWord32 -> TProgram ()

consumer	of	a	push	array	needs	to	apply	the	push-function	to	a	suitable	writer

Often	the	push-function	is	applied	to	a	writer	that	stores	its	input	value	at	the	provided
input	index into memory.	This	is	what	the	compute		function	does	when	applied	to	a	push
array.

The	general	idea	of	push	arrays	is	due	to	Koen Claessen

Obsidian	push	arrays

The	function	push		converts	a	pull	array	to	a	
push	array:

push :: (t *<=* Block) => ASize s => Pull s e -> Push t s e
push (Pull n ixf) =

mkPush n $ \wf ->
forAll (sizeConv n) $ \i -> wf (ixf i) i

Obsidian	push	arrays

The	function	push		converts	a	pull	array	to	a	push	
array:

push :: (t *<=* Block) => ASize s => Pull s e -> Push t s e
push (Pull n ixf) =

mkPush n $ \wf ->
forAll (sizeConv n) $ \i -> wf (ixf i) i

This	function	sets	up	an	iteration	schema	over	the	elements	as	a	forAll loop.	It	is	not
until	the	t		parameter	is	fixed	in	the	hierarchy	that	it	is	decided	exactly	how	that	loop	is	to	
be	executed.	All	iterations	of	the	forAll loop	are	independent,	so	it	is	open	for	computation
in	series	or	in	parallel.

forAll :: (t *<=* Block) => EWord32
-> (EWord32 -> Program Thread ())
-> Program t ()

forAll n f = ForAll n f

ForAll iterates	a	body	(described	by	higher	order	abstract	syntax)	a	given	number	of	
times	over	the	resources	at	level	t	
iterations	independent	of	each	other

t	=	Thread						=>				sequential
t =	Warp,	Block	=>			parallel

Obsidian	push	array

A	push	array	is	a	length	and	a	filler	function

Filler	function	encodes	a	loop	at	level	t	in	the	hierarchy

Its	argument	is	a	writer	function

Push	array	allows	only	a	bulk	request	to	push	all	elements	via	a	writer	function

When	invoked,	the	filler	function	creates	the	loop	structure,	but	it
inlines the	code	for	the	writer	inside	the	loop.

A	push	array	with	elements	computed	by	f	and	writer	wf corresponds	to	a	loop
for	(i in	[1,N])	{wf(i,f(i));}

When	forced	to	memory,	each	invocation	of	wf would	write	one	memory	location
A[i]	=	f(i)

Push	and	pull	arrays
Neither	pull	nor	push	arrays	are	manifest

Both	fuse	by	default.

Both	immutable.

Don’t	appear	in	Expression	or	Program	datatypes
Shallow	Embedding
See	Svenningsson	and	Axelsson	on	combining	deep	
and	shallow	embeddings

Another	scan				(Sklansky 60)

Another	scan				(Sklansky 60)

fan

Block	scan

fan :: (ASize s, Choice a)
=> (a -> a -> a)
-> Pull s a
-> Pull s a

fan op arr = a1 `append` fmap (op c) a2
where (a1,a2) = halve arr

c = a1 ! (fromIntegral (len a1 - 1))

Block	scan

sklanskyLocalPull :: Data a
=> Int
-> (a -> a -> a)
-> SPull a
-> BProgram (SPull a)

sklanskyLocalPull 0 _ arr = return arr
sklanskyLocalPull n op arr =
do
let arr1 = unsafeBinSplit (n-1) (fan op) arr
arr2 <- compute $ push arr1
sklanskyLocalPull (n-1) op arr2

hybrid

scan

Block	scan

sklanskyLocalCin :: Data a
=> Int
-> (a -> a -> a)
-> a -- cin
-> SPull a
-> BProgram (a, SPush Block a)

sklanskyLocalCin n op cin arr = do
arr' <- compute (applyToHead op cin arr)
arr'' <- sklanskyLocalPull n op arr'
return (arr'' ! (fromIntegral (len arr'' - 1)), push arr'')
where
applyToHead op cin arr =
let h = fmap (op cin) $ take 1 arr

b = drop 1 arr
in h `append` b

sklanskies n op acc arr
= sMapAccum (sklanskyLocalCin n op) acc (splitUp 512 arr)

sklanskies' :: (Num a, Data a)
=> Int
-> (a -> a -> a)
-> a
-> DPull (SPull a)
-> DPush Grid a

sklanskies' n op acc = asGridMap (sklanskies n op acc)

perform
= withCUDA $

do
kern <- capture 512(sklanskies' 9 (+) 0 . splitUp 1024)
useVector (V.fromList [0..1023 :: Word32]) $ \i ->
withVector 1024 $ \ (o :: CUDAVector Word32) ->

do
fill o 0
o <== (1,kern) <> i
r <- peekCUDAVector o
lift $ putStrLn $ show

*Main>
perform[0,1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,136,153,171,190,210,231,25
3,276,300,325,351,378,406,435,465,496,528,561,595,630,666,703,741,780,820,861,90
3,946,990,1035,1081,1128,1176,1225,1275,1326,1378,1431,1485,1540,1596,1653,1711,
1770,1830,1891,1953,2016,2080,2145,2211,2278,2346,2415,2485,2556,2628,2701,2775,
2850,2926,3003,3081,3160,3240,3321,3403,3486,3570,3655,3741,3828,3916,4005,4095,
4186,4278,4371,4465,4560,4656,4753,4851,4950,5050,5151,5253,5356,5460,5565,5671,
5778,5886,5995,6105,6216,6328,6441,6555,6670,6786,6903,7021,7140,7260,7381,7503,
7626,7750,7875,8001,8128,8256,8385,8515,8646,8778,8911,9045,9180,9316,9453,9591,
9730,9870,10011,10153,10296,10440,10585,10731,10878,11026,11175,11325,11476,1162
8,11781,11935,12090,12246,12403,12561,12720,12880,13041,13203,13366,13530,13695,
...
432915,433846,434778,435711,436645,437580,438516,439453,440391,441330,442270,443
211,444153,445096,446040,446985,447931,448878,449826,450775,451725,452676,453628
,454581,455535,456490,457446,458403,459361,460320,461280,462241,463203,464166,46
5130,466095,467061,468028,468996,469965,470935,471906,472878,473851,474825,47580
0,476776,477753,478731,479710,480690,481671,482653,483636,484620,485605,486591,4
87578,488566,489555,490545,491536,492528,493521,494515,495510,496506,497503,4985
01,499500,500500,501501,502503,503506,504510,505515,506521,507528,508536,509545,
510555,511566,512578,513591,514605,515620,516636,517653,518671,519690,520710,521
731,522753,523776]

User	experience

A	lot	of	index	manipulation	tedium	is	relieved

Program	composition	and	reuse	greatly	eased

Autotuning springs	to	mind!!

Meta-Programming	and	Auto-Tuning	in	the	Search	for	High	Performance	GPU	
Code
Michael	Vollmer,	Bo	Joel	Svensson,	Eric	Holk,	Ryan	Newton	
FHPC’15																														video paper

Compilation	to	CUDA	(overview)

1 Reification			Produce	a	Program	AST
2 Convert	Program	level	datatype to	list	of	

statements
3 Liveness analysis	for	arrays	in	memory
4 Memory	mapping
5 CUDA	code	generation	(including	

virtualisation of	threads,	warps	and	blocks)

Compilation	to	CUDA	(overview)

1 Reification			Produce	a	Program	AST
2 Convert	Program	level	datatype to	list	of	

statements
3 Liveness analysis	for	arrays	in	memory
4 Memory	mapping
5 CUDA	code	generation	(including	

virtualisation of	threads,	warps	and	blocks)

Obsidian	is	quite	small
Could	be	a	good	EDSL	to	study!!

A	language	for	hierarchical	data	parallel	design-space	exploration	on	GPUs	
BO	JOEL	SVENSSON,	RYAN	R.	NEWTON	and	MARY	SHEERAN	 paper
Journal	of	Functional	Programming	/	Volume	26	/	2016	/	e6

Summary	I
Key	benefit	of	EDSL	is	ease	of	design	exploration

Performance	is	very	satisfactory	(after	parameter	exploration)
comparable	to	Thrust

“Ordinary”	benefits	of	FP	are	worth	a	lot	here
(parameterisation,	reuse,	higher	order	functions	etc)

Pull	and	push	arrays	a	powerful	combination

In	reality,	probably	also	need	mutable	arrays	(and	vcopy from	
Feldspar)

Summary	II

Flexibility	to	add	sequential	behaviour is	vital	to	performance

Use	of	types	to	model	the	GPU	hierarchy	interesting!
similar	ideas	could	be	used	in	other	NUMA	architectures

What	we	REALLY	need	is	a	layer	above	Obsidian	(plus	autotuning)
see	spiral.net for	inspiring	related	work

I	want	a	set	of	combinators with	strong	algebraic	properties	(e.g.	for	
data-independent	algorithms	like	sorting	and	scan).
Array	combinators have	not	been	sufficiently	studied.

Need	something	simpler	and	more	restrictive	than	push	arrays

FPGAs							->										HPC

FPGAs							->										Data	Centers
See	Microsoft’s			use	of	FPGAs	at	amazing	scale
paper

Needed
A	new	high/low	language	for	Zynq

And	for	Xeon	Phi,	GPU,	CPU	…

Allow	the	programmer	to	specify	computational	hierarchy	suited	to	
the	application

Separately	specify	how	that	hierarchy	maps	to	a	real	computational	
system	(or	accept	choice	of	automated	compiler	/	autotuner)

Need	cost	models	that	support	that	process	in	practice!

One	program,	many	target	platforms

(see	for	example	Anton’s	work	on	Aplite)

Needed
A	new	high/low	language	for	Zynq

And	for	Xeon	Phi,	GPU,	CPU	…

Allow	the	programmer	to	specify	computational	
hierarchy	suited	to	the	application

Separately	specify	how	that	hierarchy	maps	to	a	
real	computational	system	(or	accept	choice	of
automated	compiler	/	autotuner)

One	program,	many	target	platforms

Talk	to	us	if	you	are	interested	in	either	MSc	or	PhD	projects

There	is	one	PhD	position	in	Heterogeneous	Systems	currently	advertised
And	there	will	be	more	…

