
Lab D Parallel Functional Programming

Part 1

The first task is a variant on the stock market problem, which is a classic NESL example. The
input is an array of Ints, corresponding to the price of a stock on successive days. You may, if
you wish, assume that the input has length a power of two. A trader wants to make either zero
or one transactions consisting of buying on one day and selling on another, later day. Write a
program using the Repa library that, given such an array of prices, returns a triple (b,s,p),
where b and s indicate the indices into the array at which it is best to buy and sell the stock
respectively, and p is the resulting profit (the difference between the prices at the two times).
If two different times for sale give the same profit, then choose the earlier one, and similarly if
two times for buying give the same profit, choose the later one. Return (0,0,0.0) or in some
other way indicate when no transaction is wise.

Example:

*Main> let ins = fromList (Z :. (8::Int)) [0,0,2,9,8,10,1,10] :: Array U DIM1 Int

Applying your buySell function to ins should give (1,5,10)

Benchmark using Criterion and report on performance and speedups (if any). The aim is to
get you to use Repa, and at the same time to start thinking about cost models in NESL. Don’t
worry if performance is disappointing.

Analyse the cost of your algorithm in terms of work and depth (or span) in the style of
Blelloch, for an input array of length N. I would like you to devote significant time to this part
of the lab, studying relevant material (including the lecture on Data Parallel Programming,
which introduces NESL, and the associated reading). The best place to start is probably on
the page about NESL at CMU. You can then move on to papers by Blelloch.

Part 2

You are required to do EITHER Task I or Task II.

(You can do both if you wish.)

Task I: write a tutorial on one of the following topics:

Repa 3: a tutorial for curious Haskell programmers

Data Parallel Haskell: a tutorial for curious Haskell programmers

Profiling and optimising parallel Haskell programs with Threadscope: a tutorial

The Par Monad for parallel Haskell programming: a tutorial

A comparison of different approaches to deterministic parallel programming in Haskell

A tutorial on Parallel Strategies in Haskell

How to use par and pseq for parallel programming in Haskell

Why choose Haskell for deterministic parallel programming?

Single Assignment C: a tutorial

Parallel functional programming in Java 8: a tutorial

GPU programming in Haskell: a tutorial on Accelerate

Parallel sorting in Haskell: how well can we do?

An introduction to skeletons and their use in parallel functional programming

Parallel programming in F#: a tutorial

Laziness considered harmful for parallel programming

or on a topic of your choice agreed with Mary by email (ms at chalmers.se). Erlang related
topics are welcome. This year, we will (as an experiment) not try to restrict each topic to
being covered by one lab group.

The main point, remember, is to make a clear and simple tutorial (something like a technical
blog post). Good tutorials often contain nice pictures! Give readers some information about
sequential and parallel running times. Submit your document or web page with all associated
images and code. We may add excellent tutorials to the course pages.

Task II: Implement an interesting deterministic parallel program in Haskell, documenting
your work in developing and optimising the program, and writing a blog post about it. We
will be particularly impressed if you in some way augment the parallel library that you are
using. If you are in doubt about your choice of problem to tackle, consult with Markus and
Anton, copying to Mary. You should put in about the same amount of work as you would in
writing a tutorial (Task I above). This task might be a good way to start exploring possible
Masters thesis topics.

	

