
17.5.2017

1

Tips and Tricks for Map-Reduce and
Big Data Databases

Chalmers & Gothenburg Uni, 18.5.2017

Jyrki Nummenmaa
Faculty of Natural Sciences
University of Tampere, Finland

Tampere – Background info
• Tampere is a third largest city in Finland and Tampere region is the

largest outside of capital area with a population a little over 500 000
(small in Chinese scale)

• There are about 150 buses in traffic during daytime
• Buses have GPS sensors. Locations are sent to background

system
• Background system shares bus locations once a second through

internet.
• We have collected and stored this data for analysis for over 2 years.

17.5.2017

2

Tampere Bus Location Data
• Real-time data stream from

Tampere public transportation
bus fleet
• > 100 vehicles

• in SIRI format
• Updates every second
• Includes e.g.

• GPS location
• Line number, direction and

departure
• Delay

Tampere Bus Location Data
• Real-time data stream from

Tampere public transportation
bus fleet
• > 100 vehicles

• in SIRI format
• Updates every second
• Includes e.g.

• GPS location
• Line number, direction and

departure
• Delay

17.5.2017

3

Data Quality Problems
• Service breaks with no data (not

very often)
• Connection to bus lost or some

other techical problem
• Shows the same position
• Last time the position was

recorded is shown
• Buses that are not in any

busline are included
• GPS accuracy

Bus delays
• Delay is a difference between timetable and arrival time
• Delay is calculated and included in the data (every second)
• For example, see below delay on Route 16 at bus stops during daytime hours
• If a bus starts late it will be late at the end
• Delay increases in the city center and some intersections

Direction 1 Direction 2

17.5.2017

4

Bus delay analysis
• From stored bus location data, analyze the traffic

fluency
• From all the observations with delay>5min, use

frequent itemset mining to find the lines,
locations and times of most regular delays

• Compare a large set of delayed journeys to not
delayed journeys to find out the bottlenecks along
the bus routes
• Take the best and worst quartiles and compare

to find out the bottlenecks

Step 1: Where, when and on which
lines do the delays typically occur?
8 AM – 9 AM 3 PM – 4 PM

4 PM – 5 PM 5 PM – 6 PM

17.5.2017

5

Route planner
• The best thing since public transportation was invented?
• You want to get from place A to place B – the route planner

calculates the necessary connection, tells you when to leave, where
to change the bus, etc.

• ”What could go wrong”?

On-line prediction service

17.5.2017

6

16:30

17:45-
18:15

80 % of the traveling times fit between the blue and black lines.

Half of the traveling times are below and half above the red
line.

*)

*) Computed from a sample of 5744 observations
on 76 working days / winter 2014-2015, with 15
minute time resolution

“Prisma” junction, left turn, bus
line No 3

• Accident in the junction
on October 8th 2014 at
about 8AM jammed the
traffic

• The traveling time in the
junction raised to about
10-fold compared to a
normal morning traffic

• (In addition, we can see that the traffic signal
settings are probably different at the time
when the model was built compared to
October 8th => the model must be
continuosly updated)

Exceptional case

17.5.2017

7

*)

*) Computed from 28002 observations on 76 days in winter 2014-
2015 with 15 minute time resolution Green: Monday 2nd February 2015

Daily peak “Pispalan valtatie”

• All the ~2000 between-busstops-
segments in Tampere can be
automatically profiled using
bus history data to get the
”normal profile”

• E.g. with 30 min resolution,
the model is a table of ~60000
rows and ~5-10 columns of
numerical information

• Fits easily in main memory
• From the normal profile, we can

find the interesting links that
contain some regular peaks

• All the profiles can be used in
real time to detect exceptional
traffic situations

Interesting profile Not interesting profile

Monitoring Tampere traffic

17.5.2017

8

• Fast analysis for bus changes and traffic status using
latest data

• This analysis needs models that have to be computed
using the collected data

• Relatively high volume of incoming data
• We need scalable solutions

• To work in a city of any size
• Supporting both fast on-line analysis on the latest

data, and massive background processing

Computational challenges

Traffic data and databases

• We started storing the data in an SQL database but soon
found out it was not a good solution. At least the way we
did it.

• Now we store data in HDFS in files, and in Hbase.
• Both can be used for MapReduce
• We compute statistical models etc using MapReduce.
• Mapping can be done based on e.g. geographical area

etc.
• Hbase is used to access the latest data.

• If primary key starts with timestamp, then the data is
physically ordered by time – once the start of the data
has been found, it is very fast to access the latest data.

17.5.2017

9

On-line prediction service

Compute parameters: MapReduce
Each night, for yesterday (note that we search data by timestamp):
1. Map: by key (line, direction, origin, destination, departureTime, data)

- additionally only arrivalTime and position are needed from the raw
data (~800 Mb per day, we use 60 days, but every night just the last
day’s data is calculated – previous data does not change.)

2. Reduce: Find the information of the bus stop, and for each stop, find
for each bus the arrival and departure time (a bit of calculations with
the coordinates are involved.

3. Store the resulting stopCode, arrivalTime, departureTime data
(~5 Mb)

Now for the latest 60 weekdays (~300 Mb or arrival and departure data)
1. Map: by

(line,direction,origin,destination,originDepartureTime,stopCode)
2. Reduce: compute the distributions
3. Results are saved for on-line prediction (~10 Mb)

17.5.2017

10

MapReduce principles
• Map processes are completely independent of

each other, once they are started.
• Map results are combined in the Reduce step.
• After that you can do subsequent MapReduce

rounds.
• In the previous example, this was done because

of different data sets
• First MapReduce yesterday’s data.
• Then merge it with the 59 days before

yesterday, but on another granularity level.
• Let’s check a couple of more cases…

Frequent Sequence Mining
• Sequences can be thought of as strings.

• Special case of Frequent Itemset Mining.
• There are different mining tasks, most likely is to

check for ”common patterns” in strings.
• E.g. ”AB” appears in 50% of

{”ABC”,”AAB”,”ACB”,”CCC”}
• And in 75% if we allow gaps of length 1.

• Support of pattern p is the number of strings
containing p divided by the number of all strings.

• We want to find top-k of those patterns (e.g. 20
with biggest support).

• How to MapReduce?

17.5.2017

11

Frequent Sequence Mining / 2
• It is possible to distribute the computation of support into

MapReduce tasks. This makes sense, if the data set is
huge.

• However, usual ”generate-and-test” strategies generate
candidate patterns and use some pruning rules.
• A typical pruning rule follows the a priori principle. A

sequence cannot have a bigger support than any of its
subsequences.

• While generating the candidates you can maintain the
top-k candidates and right off reject the sequences
whose support is not enough, and all of their
supersequences.

• But to compute the support I need the whole dataset!
• What can I do?

Frequent Sequence Mining / 3
• If the whole dataset fits in memory, it is possible to

distribute the ”candidate space” between the MapReduce
processes and they can completely manage their
candidate space (sequences starting with ’AB’ on one
server, ’AC’ on another, etc…

• Usually the candidate space is so big that you can employ
a sufficient amount of servers with this strategy.

• If the whole dataset does not fit in memory, then each
support computation round is parallel / distributed.

17.5.2017

12

Graph Algorithms
• Many graph algorithms are

”walking” around the graph in
such a way that we cannot
split the graph into suitable
slices for MapReduce.

• This means that we are even
worse of than in Frequent
Sequence Mining – it seems
incredibly complicated to
write algorithms that operate
on ”slices” of a graph.

Stanford to rescue

17.5.2017

13

Stanford maintains an interesting
Large Network Dataset Collection

From Facebook, Wikipedia, Amazon reviews, etc.
Distribution of graph sizes in the library according
to the article

Size (no of edges) No of graphs
< 0.1 M 18
0.1M – 1M 24
1M – 10M 17
10M – 100M 7
100M – 1B 4
>1B 1

SNAP RAM memory consumption

• Node: 54.4 bytes (obviously average)
• Edge 8.3 bytes (obviously average)
• For 1024 GB RAM, SNAP can represent grpahs

with 123.5 billion edges.
• According to the network library statistics on

previous slide, this seems sufficient in practice.

17.5.2017

14

MapReduce and Graphs
• There are still computations that require

various rounds and benefit from MapReduce
• Consider a ”centrality” of node v based on how

many shortest paths between a pair of nodes
goes via v.

• What can be done with MapReduce?
• For a shortest path between (v1,v2) you

need the whole graph.
• BUT you can distribute the input parameter

space (node pairs) into different
computations that get these parameters
and the whole graph.

Sampling
• Sometimes you may not or simply cannot scan

through all of the data – at least not initially.
• Sampling can be used to estimate from the

data
• Remember that there is no clean big data.
• There can always be an error.
• Basically data mining implies you estimate

things from the data.

17.5.2017

15

Execution parameters
• Consider e.g. Spark, which can be used to run

MapReduce in main memory.
• Programmers’ job is easy: Write a Map function

and a Reduce function.
• The system takes care of the rest – really?
• Spark executes in ”containers” – let’s see an

example configuration for a small-scale system:

Smal system “back home”
• 1 node. 24 CPU cores and 60 GB RAM
• 5 nodes -> 120 CPU cores and 300 GB RAM
• Spark configuration for 1 container: 2 cores

CPU and 4GB RAM
• Total: 60 containers and 240 GB RAM

• Some RAM needed for other things…
• When executing your work you specify the no

of executors, and executor-cores & RAM
• Check your data size! (Spark prefers 500 MB)
• Check the tasks (executors)! Too large -> high

overhead.
• Spark does not tune this for you.

17.5.2017

16

Big Data Databases –
A couple of points

Social media applications
• Lots of users
• Lots of data
• Each user has needs data from

”neighbours”
• Simple transactions
• Reliability not such a priority as e.g. in

banking
• Approximate analysis should usually be

ok
• Topic trends, interest mining (for e.g.

marketing purposes)

17.5.2017

17

Internet shopping
• Lots of users
• Lots of data
• Users mostly just browse the

items and maybe collect items
into a local ”shopping cart”.

• Only when the users make a purchase, they
change some database content
• What if the shop does not have the

products, because two customers try to buy
them at the same time?

• Data mining and analysis for advertisments,
suggestions, etc.

What are databases?
• Reliable data storage

• Tolerates failures
• Protects your data
• Little down-time

• Multiple concurrent users
• High-level query language

• Interactive access and access from programs
• However somewhat limited with complex

and special data types
• Large amounts of data
• Classic choice: databases based on the idea of

simple table (relational databases)

JN1

Slide 34

JN1 Maybe mention that databases tend to go in for uniform structure, rather than ad hoc structures of
programming applications
Jyrki Nummenmaa; 17.5.2017

17.5.2017

18

Big Data databases are needed…
• …because our data is distributed in servers in

different locations!
• No. Distributed databases are nothing new.

They were available ages ago and you can
read about them in old database textbooks
etc.

• …because there is so much data these days
that we need to store!
• No. There are traditional database products

developed into Big Data scale and you can
put your petabytes of data there.

Big Data databases are needed…
• …because our data types are not like in the

traditional database systems!
• There are NoSQL (no SQL / not only SQL)

databases that are not really for distributed
large data sets.

• …because you want to program your own Big
Data computations and not use the database
query & computations facilities!
• Yes. But note that some database products

like Teradata give an option to integrate
MapReduce & R into your data as well.

17.5.2017

19

Big Data databases are used…
• …because we do not want to pay very

expensive licenses!
• Definately. Now there are open source

products that work really nicely with Big
Data on Hadoop platform.

• …because the tables are growing ”wider”
(more and more attributes)!
• This is a part of the modern development

anyway, and needs a different approach
from the traditional one. However the
standard database producs can handle vast
amounts of attributes.

Big Data databases are used…
• …because you have reasonably cheap

hardware and want to benefit from Hadoop
failure management!
• Yes, this could be good motivation.

• …because you are willing to compromise the
traditional database ”values” for scalable Big
Data solutions!
• You may be able to do that with traditional

database systems as well.

17.5.2017

20

Distributed databases
• More data can be managed and it can be

placed in computers in different places.
• This provides performance, but with the cost of

increased coordination between the database
instances on different computers.

• In particular, the updates need to be
coordinated to ensure that they are managed
consistently across the distributed database.

• There will be a lot about distributed updates in
the next lecture.

• But not so much of distributed commit
protocols.

JN9

JN10

Distributed Transactions

• In a distributed transaction there is a set of
subtransactions T1,...,Tk, which are executed on
sites S1,...,Sk.

• Each subtransaction manages local data. The
particular problems of managing distributed
transactions vs. centralised (local) transactions
come from two sources:
• Data may be replicated to several sites. Lock

management of the replicated data is a particular
problem (can be done by voting).

• Regardless of whether the data is replicated or not, there
is a need to control the fate of the distributed transaction
using a distributed commit protocol.

Slide 39

JN9 There are no advantages in terms of quantity of data. If an organization has a distributed database, it
will be because it was forced to acceppt the solution. E.g., two companies with different database
technologies merged.
Jyrki Nummenmaa; 17.5.2017

JN10 I doubt whether there are any performance benefits. An organization tolerates a distriuted database
because integrating the databases would be a nightmare.
Jyrki Nummenmaa; 17.5.2017

17.5.2017

21

Distributed Transaction

• A set of participating processes with local sub-
transactions, distributed to a set of sites,
perform a set of actions.

• All or none of the updates or related
operations should be performed.

• Process autonomy - any process can
unilaterally decide to abort the transaction.

Distributed Commit

• At the end of the transaction, it must be found
out, whether it is feasible to make the proposed
changes on all participating processes.

• This is done by a voting protocol called
distributed commit protocol.

• Without failures, voting would be extremely
simple.

17.5.2017

22

Failure

• Hardware failure
• Software crash
• User switched off a computer
• Active attack
• Network/message delivery failure
• Denial-of-service attack
• Typically, these failures are partial.

2PC for Distributed Commit

Coordinator

Vote-Request

Yes or No votes

Multicast decision: Commit, if all
voted Yes, otherwise Abort.

Participants

17.5.2017

23

Multicast ABORT

2PC - a timeout occurs

Coordinator

Vote-Request

Timeout occurs

Yes or No votes

Participants

ACID properties in Big Data databases

• Typically, transactions are simple. So:
• Atomicity is not a concern.
• Concistency checking is complicated and ”dirty

reads” may occur.
• Simple transactions help in isolation

maintenance.
• Durability is required.

• But not as critical as in e.g. banking.

17.5.2017

24

Physical arrangements

• BigTable is Google’s Big Data database model.
• Rows maintained in sorted by primary key order

• Applications can use this property for efficient row
scans

• Columns grouped into column families
• Column key = family:qualifier
• Column families provide locality hints
• Unbounded number of columns

BigTable Applications and HBASE

• BigTable can be used as input and output for
MapReduce

• Applications: Google’s web crawl, Google Earth,
Google Analytics

• HBase is the open source Hadoop
implementation of Bigtable.
• Runs on HDFS (which provides replication)
• Scales up to 1000s of servers and PBs of data.

17.5.2017

25

HBase is ..

• A distributed data store that can scale
horizontally to 1,000s of commodity servers and
petabytes of indexed storage.

• Offers persistency
• Can deal with distributed, sparse data
• Designed to operate on top of the Hadoop

distributed file system (HDFS) or Kosmos File
System (KFS, aka Cloudstore) for scalability,
fault tolerance, and high availability.

Hbase uses multiversioning

• Multiversioning is the alternative for locking in
concurrency control
• Transactions can write new data
• Transaction can read the “right” data based on its

own timestamp and timestamps of the data
versions.

• A value is identified by tuple
(Table,RowKey,ColFamily,Column,Timestamp)

• By default 3 versions are kept, but this can be
configured.

17.5.2017

26

Hbase uses multiversioning

• Multiversioning is the alternative for locking in
concurrency control
• Transactions can write new data
• Transaction can read the “right” data based on its

own timestamp and data versions’ timestamps.
• No real transaction model in Hbase (just get&put)

• A value is identified by tuple
(Table,RowKey,ColFamily,Column,Timestamp)

• By default 3 versions are kept, configurable.

Hbase data organization
• Data is organized into stores by column families
• Value only exists, if stored (implicit NULLs)
• Data is physically ordered by row key.
• Can also be partitioned by row key.
• Data is stored as bytes (Hbase point of view)
• No secondary indexing built-in.

• -> Primary key selection is very important.

rowId1
rowId2

rowId3

rowId4

Column family 1 Column family 2

17.5.2017

27

Queries vs. scanning of data

• No query language included.
• Data read from Hbase can be fed to MapReduce

• Good integration for this.
• MapReduce output can also go to HBase.

• Fast scanning of data between row key interval.
• After locating the right primary key, it is possible to

read the column family data fast, using this physical
order.

• By default read gives the last data by timestamp.

When HBase

• Lot of writes but no updates to previously written
data.

• It is feasible to use the primary key for direct
access and MapReduce for other searching.
• No need for more sophisticated query language.

• Used by Facebook, twitter, Yahoo! etc.

17.5.2017

28

Let’s go back to last week’s cartoon!

How could end-users explore the
database without their own distributed
MapReduce written in Erlang?

17.5.2017

29

What is dimensional analysis and
OLAP?

17.5.2017

30

Dimensional Approach

• Separation between quantitative and
qualitative attributes
• Measure

• Is a measure of facts (events)
• Is aggregatable
• Is a quantitative attribute

• Dimension
• Is a logical entity (Customer, Product, Time, …)
• Each dimension has qualitative attributes describing the

entity

• Representation as a multidimensional
matrix

Formalizing the dimensional model

1. A dimension schema Di (1 i n) is a sequence
< Ai1,Ai2,...,Aix > (x = |Di|) of attributes, called levels. (one
attribute per level, see 4)

2. D =< D1, D2, . . . , Dn > is an ordered set of dimension
schemata.

3. M = {M1,M2,...,Mq} is a set of measure attributes.

4. The members of the collection {D1,D2,...,Dn,M} are pairwise
disjoint (Because of this, one attribute per level does not
limit generality)

17.5.2017

31

Dimensions and measures?

Example

• Example 1. Let (D,M) be a summarization schema in
which D =< D1,D2 > and M = {M1}. We let D1 = {A1,A1

2}
and D2 = {A2

1,A2,A2
3}. Let r = {t1, t2, . . . , t5} be the

following (flat) relation over the summarization
schema (D, M).

• A1.1 • A1.2 • A2.1 • A2.2 • A2.3 • M

• t1 b1 c1 d1 e1 f1 10001

• t2 b1 c2 d1 e1 f1 10020

• t3 b2 c3 d1 e1 f2 10300

• t4 b2 c3 d2 e1 f3 14000

17.5.2017

32

Formalizing the dimensional model

Definition 2 (Set of domain values). Let r be a
relation over a summarization schema, (D, M).
For 1 i |Di|, 1 j n, DOMji(r) denotes the set
of domain values in the Aij column of r.

Example 2. Thus, in our running example, we
have the following values in Dimension 1

Dimension D1

DOM11(r) = {b1, b2} DOM21(r) = {c1,c2, c3}

Set of domain values

Definition 2 (Set of domain values). Let r be a relation over a
summariza- tion schema, (D, M). For 1 i |Di|, 1 j n,
DOMji(r) denotes the set of domain values in the Aij column of r.

Example 2. Thus, in our running example, we have the
following values:

Dimension D1

DOM11(r) = {b1, b2} , DOM21(r) = {c1, c2, c3}

Dimension D2

DOM32(r) = {f1, f2, f3} DOM12(r) = {d1, d2} DOM2(r) = {e1, e2}

17.5.2017

33

How do end-users query ?

• There is a large
amount of users
who can use
such tools as
Excel pivot tables,
which can utilize
(and create small)
dimensional
structures

Simple summarization

SELECT DaysToManufacture,
AVG(StandardCost) AS AverageCost
FROM Production.Product
GROUP BY DaysToManufacture;
DaysToManufacture AverageCost
0 5.0885
1 223.88
2 359.1082
4 949.4105

17.5.2017

34

Example pivoted in SQL

Traditional data flow for OLAP
cubes (dimensional structures)

Transaction
workload

Operational
database

Data
warehouse

Regular
data
feeds

Create, Read,
Update, Delete

Dimensional
Databases
(OLAP)
built on
demand for
analysts

Extraction
driven by
demand

End-user’s
Spreadsheet

17.5.2017

35

Big Data era

• End users like to use the same tools
• Results are wanted fast
• New data is coming in fast
• There are lots of attributes, dimensional

structures would be huge, and may contain
vast amounts of values that are never looked at

• It is becoming increasingly non-practical to pre-
compute the dimensional structure (such as
OLAP cube)

“Curse of dimensionality”

• “[…] no feasible data cube can be constructed with […]
over 100 dimensions and […] 106 tuples”

Li, X., Han, J. and Gonzalez, H., High-dimensional OLAP: a minimal
cubing approach. Proceedings of the 30th VLDB Conference, Toronto, Canada,
2004, pp. 528-539.

• This was described as the “curse of dimensionality”
Gibas, M., Canahaute, G., AND Ferhatosmanoglu, H. 2008. Online

index recommendations for high dimensional databases using query
workloads. IEEE Trans. on Knowl. and Data Eng. 20, 2, 246–260.

• Lazy evaluation avoids such a curse.

17.5.2017

36

Cube vs. No cube

• CUBE:
• Acceptable performance with small number of dimensions
• Good for complex “navigational” style dimensional queries.
• Pre-aggregation may be needed for performance.
• Examples: Cognos Powerplay, Oracle OLAP Option, Microsoft

Analysis Services, Essbase
• NO CUBE:
• Can cope with a large number of dimensions.
• Only suited to relatively simple aggregation expressions.
• Advantageous for unpredictable ad hoc queries.
• Examples: SAP Business Objects, Oracle BI Suite, Microsoft Analysis

Services.

Statistical approach

• General method:
1. Find distribution functions to fit the measure attributes
2. Capture the intra relationship among attributes.
3. Use probability density functions of joint distributions to find

approximate answers to aggregation functions.

• Problem: suppose you find some interesting-looking
results:

1. How do you estimate the error margin?
2. How do you (quickly) find the exact answer for the items of

information in which you are particularly interested?
• Solution: use our technique!

17.5.2017

37

User Input

1. The subset of the dimensions over which aggregation is required.
2. For each such dimension, the name of the attribute which

corresponds to the required level in the aggregation hierarchy.
3. For each such attribute, a domain member to be used for selection

(later called “slicer”).
4. An expression in which the operands are aggregation functions

(e.g. MIN, MAX, AVG) with measure attributes as arguments.

• Inputs for our technique can be obtained “semi-automatically” using
Pivot Tables.

Rollup vector

Let D =< D1, D2, . . . , Dn > be dimension schemata.
A rollup vector for D is an ordered n-tuple of integers, L =<
L1,L2,...,Ln >, where for i = 1,2,...,n,0 Li |Di|.

The interpretation of the values of the elements of L is as
follows.
– Li = 0 denotes that the user’s analysis does not require an
axis corresponding to dimension schema Di.
– 1 Li |Di| denotes that the user’s analysis requires an axis
corresponding to dimension schema Di.

If Li = l, and r is the relation of interest, then the axis that
corresponds to dimension schema Di shall be labelled by the
elements of DOMli(r), (members of the attribute column Ail)

17.5.2017

38

Selection on cube values

Slicer vectors are used to select on different
levels of dimension hierarchies.

Permissible values in the slicer vector are
constrained by the values in the rollup vector.
The slicer for a given dimension must be a
single member of the level for that dimension
which is specified in the rollup vector.

Selection on cube values

Given a relation, r, a dimension, Di, 1 i n, and a level
number, l, 1 l |Di|, let Ail denote the attribute
associated with level l of dimension Di and let x
DOMli(r).

The set of tuples in a relation r, which have the value x in
the attribute column denoted by i and l is:

tuples(i,l,x) =

r, if l = 0 t r|t[Ail] = x , if l = 0

17.5.2017

39

Selection on cube values

The tuples() sets for our running example is as follows: tuples(1,1,b1) = {t1,t2}
tuples(1,1,c3) = {t3,t4} tuples(2,2,e2) = {t4} tuples(1,1,b2) = {t3,t4} tuples(2,1,d1) =
{t1,t2,t3} tuples(2,2,e1) = {t1,t2,t3} tuples(1,1,c1) = {t1} tuples(2,1,d2) = {t4}
tuples(2,3,f2) = {t3} tuples(1,1,c2) = {t2} tuples(2,3,f1) = {t1,t2} tuples(2,3,f3) = {t4}

• A1.1 • A1.2 • A2.1 • A2.2 • A2.3 • M

• t1 b1 c1 d1 e1 f1 10001

• t2 b1 c2 d1 e1 f1 10020

• t3 b2 c3 d1 e1 f2 10300

• t4 b2 c3 d2 e1 f3 14000

Slicer vector

Given the summary state s = (r, L), L =< L1,
L2,...,Ln >, a slicer vector for s is an ordered
set < x1,x2,...,xn > where for i = 1,2,...,n, if in
the rollup vector, Li = 0, then xi = NULL;
otherwise let Li =l>0, then xi DOMli(r).

Example 6. Given the rollup vector, < 1, 2 >, a
valid slicer vector is < b1, e1 >.

17.5.2017

40

Slicer vector

Given a summary state, s = (r, L), and a slicer
vector, we can find the collection of tuples() sets
which contain the measure values needed by the
summary function in order to compute the value
for the cell identified by the slicer vector.
Example 7. In our running example, the rollup
vector, < 1, 2 >, and the slicer vector, < b1, e1 >,
give tuples(1, 1, b1) = {t1, t2} and tuples(2, 2, e1)
= {t1, t2, t3}.

Summary Rowset

The rollup and slicer vectors identify the cell in the
summarization structure for which a
summarization operation is to be performed. In
our implementation, the actual data for this
summarization operation is in the original relation.

Let s = (r,L) be a summary state and let

x =< x1,x2,...,xn > be a slicer vector for s. The set

tuples(i, Li, xi) is the summary rowset for s and x .

17.5.2017

41

Theorem 1

Let s = (r,D,< L1,L2,...,Ln >,f,M1) be a summary
state, and
x =< x1,x2,...,xn > a slicer vector for s.

Then a row t r must be included in an
aggregation operation for the cell identified by x if
and only if

t tuples(i, Li, xi).

Example using Theorem 1

Using the data in our running example, with the
summary state and the slicer vector from Example 6,
suppose we want to apply the SUM aggregation
operator.
Using Theorem 1, the summary rowset is T = tuples(1, 1,
b1) tuples(2,2,e1) = {t1,t2}. The sum for this cell is
given by the expression ti[M].
From the data, t1[M] = 10001 and t2[M] = 10020. The
sum is 20021.

17.5.2017

42

Using Theorem 1

Thus, given a denormalised [10] table (which
contains both the fact data and the dimension
data), a rollup vector and a slicer vector, we
can use Theorem 1 to compute a summarised
value anywhere in the summarization
structure directly, without having to create the
entire cube.

Implementation

• The user:
• Loads the data model into Excel (with a sample of the

data)
• Creates a pivot table with the slicers and filters
• Clicks on the required pivot table cell

• Our software
• Captures the cube formula for the cell,
• Generates the SQL query which efficiently computes

the aggregation for the cell using the whole data
• Executes the query and returns the result

17.5.2017

43

SQL code to generate SQL

ALTER PROCEDURE [dbo].[sp_Build_and_Exec_Query]
@numberOfDimensions INT, @measureAttributeName NVARCHAR(100),

@aggregationFunctionName
NVARCHAR(100)
AS BEGIN

DECLARE @sql NVARCHAR(MAX), @attributeName NVARCHAR(MAX), @dim INT,
@val NVARCHAR(8);

SET @sql = N'SELECT ' + @aggregationFunctionName + N' (' +
@measureAttributeName

+ N') FROM tblFlat
WHERE ';

SET @dim = 1;
WHILE @dim <= @numberOfDimensions BEGIN

SET @attributeName = getAttributeName(@dim);
SELECT @val = [val] FROM dbo.MemberVector WHERE dimNumber = @dim;
IF @dim > 1 SET @sql = @sql + N' AND ';
SET @sql = @sql + + @attributeName + N' = ''' + @val + '''';
SET @dim = @dim + 1;

END
EXECUTE sp_executesql @sql;

END

Example of generated SQL

SELECT SUM(M1)
FROM T
WHERE
D1L2 = 'D01L2M01' AND D2L1 = 'D02L1M1'

AND D3L2 = 'D03L2M01'
. . .
AND D100L1 = 'D100L1M1'
AND D101L2 = 'D101L2M0';

17.5.2017

44

Performance

Time to aggregate a single sell plotted against
the number of dimensions

Performance vs. database size

Rows & Response time

500,000 1674

600,000 1841

700,000 2032

800,000 1994

900,000 2137

1,000,000 2086

17.5.2017

45

Disjointness of summary sets

Lemma 1. Disjointness of summary rowsets. Let s
= (r,L) be a summary state, L =< L1,L2,...,Ln >, let x
and x be different slicer vectors for s and let T
and T be the corresponding summary rowsets for
x and x . Now, T T = .

A particular consequence of Lemma 1 is that the
calculation of a summary value for different cells
does not involve redundant computation.

Null and non-null cells

Given a summarization instance, in general the vast majority of
summary cells will be NULL. A summary cell will be NULL if the
tuple set associated with cell’s slicer vector is empty.
The number of non-NULL cells in the summarization instance
cannot exceed the number of rows in the de-normalised relation
(and it could be a lot less than this number of tuples).
By contrast, the number of summary cells depends on the
number of axes and the number of values to index each axis, and
the number of members. For example, if there are one hundred
axes each with 10 values in the summarization instance then
there will be 10100 summary cells.

17.5.2017

46

Unique slicer vectors for tuples

Lemma. Let s = (r,< L1,L2,...,Ln >) be a summarization
instance. For each row, t r, t is in the tuple set of exactly one
slicer vector, and that slicer vector can be formed from the
values in t.

For any tuple in the relation, there is a unique slicer vector
and for any slicer vec- tor there is a unique summary cell.
Consequently, a summarization instance defines a set-
theoretic partition on the set of tuples in the denormalised
relation. Given a sum- marization instance, Algorithm 1
computes exactly the non-empty elements of that partition.

…continued

At the end of this process, we have the partition of the set of
tuples. With each element of the partition, we have the
associated slicer vector. Thus we have identified every non-
NULL summary cell associated with the summarization instance.

Now, when the user wants to find the contents of a summary cell,
we determine the slicer vector, say x for that summary cell, then
we find the matching partition whose members are precisely the
tuples, t, for which slicerV ector(s, t) = x.

If no partition is found, then this summary cell is NULL.

17.5.2017

47

Complexity of computing
the tuple sets
Theorem. The tuple sets associated with all non-NULL
summary cells in a summarization instance can be com-
puted in time O(nw), where n is the number of dimensions
and w is the number of tuples in the denormalised relation.

The proof is based on an algorithm iterating through the
tuples of the denormalised relation and for each tuple,
constructing an n-place vector. For each such vector, it must
check by using a hash function whether or not it has already
generated an identical vector for an earlier tuple. There can
be no more than w such vectors.

Number of possible rollup vectors

Lemma. Given a summarization schema (< D1 , ..., Dn >,
M), the number of possible rollup vectors is exponential
to n.
Proof. Consider a case, where each Di =< Ai1 >. Then in
the rollup vector the corresponding Li may be either 0 or
1, thus giving n2 different rollup vectors. In case that the
dimensions contain more attributes, there will be even
more different rollup vectors.

17.5.2017

48

Complexity of computing
the tuple sets
Theorem. The tuple sets associated with all non-NULL
summary cells in a summarization instance can be com-
puted in time O(nw), where n is the number of dimensions
and w is the number of tuples in the denormalised relation.

The proof is based on an algorithm iterating through the
tuples of the denormalised relation and for each tuple,
constructing an n-place vector. For each such vector, it must
check by using a hash function whether or not it has already
generated an identical vector for an earlier tuple. There can
be no more than w such vectors.

Conclusions

• Virtually unlimited amount of dimensions
can be managed

• The present technique collects the tuples
from SQL database or databases

• The technique parallelizes in a
straightforward way, but that is yet to be
done to test the technique using Spark or
Hadoop MapReduce

17.5.2017

49

Finally it is over…

• Questions?

