Parallel Functional Programming
Repa

http://www.cse.chalmers.se/edu/course/pfp

Amorphous

T

Nested Data Parallel

A Haskell
Flat Accelerate Repa
Embedded Full

Slide borrowed from G. Keller’s lecture

DPH

Parallel arrays [:e:] (which can contain arrays)

DPH

Parallel arrays [:e:] (which can contain arrays)

Expressing parallelism = applying collective operations to parallel arrays

Note: demand for any element in a parallel array results in eval of all elements

DPH array operations

(1) :: [:a:]->Int->a

sliceP :: [:a:] -> (Int,Int) ->[:a:]

replicateP :: Int ->a -> [:a:]

mapP :: (a->b) ->[:a:] ->[:b:]

ZipP :: [:a:] ->[:b:] ->[:(a,b):]

ZipWithP :: (a->b->c) ->[:a:] ->[:b:] ->[:c:]
filterP :: (a->Bool) -> [:a:] ->[:a:]

concatP :: [:[:a:]:] ->[:a:]

concatMapP :: (a -> [:b:]) -> [:a:] ->[:b:]
unconcatP :: [:[:a:]:] ->[:b:] ->[:[:b:]:]
transposeP :: [:[:a:]:] ->[:[:a:]]

expandP :: [:[:a:]:]->[:b:] ->[:b:]
combineP :: [:Bool:] -> [:a:] ->[:a:] ->[:a:]
splitP :: [:Bool:] ->[:a:] -> ([:a:], [:a:])

Examples

svMul :: [: (Int,Float):] -> [:Float:] -> Float
svMul sv v = sumP [: £*(v !': i) | (i,£f) <- sv :]
smMul

[: (Int,Float) :]:] -> [:Float:] -> [:Float:]
= [:

[:
smMul sm v svMul row v | row <- sm :]

Nested data parallelism
Parallel op (svMul) on each row

Data parallelism

Perform same computation on a collection of differing data values

examples: HPF (High Performance Fortran)
CUDA

Both supportonlyflat data parallelism

Flat : each of the individual computationson (array) elementsis
sequential

those computationsdon’tneed to communicate
parallelcomputations don’tspark further parallel computations

Regular, Shape-polymorphic, Parallel Arrays in Haskell

Gabriele Keller’ ~ Manuel M. T. Chakravarty' Roman Leshchinskiy®

Simon Peyton Jones* Ben Lippmeier’

'Computer Science and Engineering, University of New South Wales *Microsoft Research Ltd, Cambridge
{keller,chak,rl benl}@cse.unsw.edu.au simonpj@microsoft.com

API for purely functional, collective operations over dense,

rectangular, multi-dimensional arrays supporting shape
polymorphism

ICFP 2010

ldeas

Purely functional array interface using collective (whole array)
operations like map, fold and permutations can
— combine efficiency and clarity
— focus attention on structure of algorithm, away from low level details

Influenced by work on algorithmic skeletons based on Bird
Meertens formalism (look for PRG-56)

Provides shape polymorphism notin a standalone specialist
compiler like SAC, but using the Haskell type system

terminology

Regular arrays
dense, rectangular, most elements non-zero

shape polymorphic
functions work over arrays of arbitrary dimension

Regular arrays

terminology

dense, FECtaf note: the arrays are purely \

shape polym
functions wo

demanded at once

P processing elements, n array
elements => n/P consecutive
elements on each proc. element

U

functional and immutable

All elements of an array are

-> parallelism

—

_/

data Array sh e = Manifest sh (Vector e)
| Delayed sh (sh -> e)

data Array sh e = Manifest sh (Vector e)
| Delayed sh (sh -> e)

class Shape sh where

toIndex :: sh -> sh -> Int
fromIndex :: sh -> Int -> sh
size :: sh -> Int

.. .more operations...

data DIM]1 = DIM1 !Int
data DIM2 = DIM2 !Int !Int
...more dimensions...

index :: Shape sh => Array sh e -> sh -> e
index (Delayed sh f) ix = f ix
index (Manifest sh vec) ix = indexV vec (toIndex sh ix)

delay :: Shape sh => Array sh e -> (sh, sh -> e)
delay (Delayed sh f) = (sh, f)
delay (Manifest sh vec)

= (sh, \ix -> indexV vec (toIndex sh ix))

map :: Shape sh => (a -> b) -> Array sh a -> Array sh b
map f arr = let (sh, g) = delay arr
in Delayed sh (f . qg)

zipWith :: Shape sh => (a -> b -> c¢)
-> Array sh a -> Array sh b -> Array sh c
zipWith £ arrl arr2
= let (shl, f£f1) delay arrl
(_ sh2, £2) = delay arr?2
get ix = £ (f1 ix) (f2 ix)
in Delayed shl get

force :: Shape sh => Array sh e -> Array sh e
force arr
= unsafePerformIO
S case arr of
Manifest sh vec
-> return $ Manifest sh vec
Delayed sh £
-> do mvec <- unsafeNew (size sh)
fill (size sh) mvec (f . fromIndex sh)
vec <- unsafeFreeze mvec
return $ Manifest sh vec

Delayed (or pull) arrays great idea!
Represent array as function from index to value

Not a new idea
Originated in Pan in the functional world | think

See also
Compiling Embedded Langauges

But this is 100* slower than expected

doubleZip :: Array DIM2 Int -> Array DIM2 Int
-> Array DIM2 Int
doubleZip arrl arr?2
= map (* 2) $ zipWith (+) arrl arr2

Fast but cluttered

doubleZip arrl@(Manifest ! !) arr2@(Manifest ! !)
= force $ map (* 2) $ zipWith (+) arrl arr2

Things moved on!

Repa from ICFP 2010 had ONE type of array (that could be either
delayed or manifest, like in many EDSLSs)

A paper from Haskell’11 showed efficient parallel stencil
convolution

http://www.cse.unsw.edu.au/~keller/Papers/stencil.pdf

Fancier array type (Repa 2

data Array sh a

= Array { arrayExtent :: sh
, arrayRegions :: [Region sh a] }
data Region sh a
= Region { regionRange :: Range sh
, regionCGen :: Generator sh a }
data Range sh
= RangeAll
| RangeRects { rangeMatch 11 sh -> Bool

, rangeRects :: [Rect sh] }
data Rect sh
= Rect sh sh

data Generator sh a
= GenManifest { genVector :: Vector a }

| forall cursor.

GenCursored { genMake :: sh -> cursor
, genShift :: sh -> cursor -> cursor
, genLoad 11 cursor -> a }

Figure 5. New Repa Array Types

Fancier array type

data Array sh a

= Array { arrayExtent :: sh
, arrayRegions :: [Region sh a] }
data Region sh a
= Region { regionRange :: Range sh
, regionCen :: Generator sh a }

data Range sh
= RangeAll

| RangeRects { rangeMatch

, rangeRects

data Rect sh
= Rect sh sh

data Generator sh a
= GenManifest { genVector

| forall cursor.
GenCursored { genMake

-

But you need to be a guru to get good performance!

o

Put Array representation into the type!

The fundamental problem with Repa 1 & 2 is the following: at an
particular point in the code, the programmer typically has a clear
idea of the array representation they desire. For example, it may
consist of three regions, left edge, middle, right edge, each of which
is a delayed array. Although this knowledge is statically known to
the the programmer, it is invisible in the types and only exposed to
the compiler if very aggressive value inlining is used. Moreover, the
programmer’s typeless reasoning can easily fail, leading to massive
performance degradation.

The solution is to expose static information about array repre-
sentation to Haskell's main static reasoning system; its type sys-
tem.

Repa 3

(Haskell’12

Guiding Parallel Array Fusion with Indexed Types

Ben Lippmeier’

"Computer Science and Engineering
University of New South Wales, Australia

{benl,chak keller }@cse.unsw.edu.au

Abstract

We present a refined approach to parallel array fusion that uses
indexed types to specify the internal representation of each array.
Our approach aids the client programmer in reasoning about the
performance of their program in terms of the source code. It also
makes the intermediate code easier to transform at compile-time,
resulting in faster compilation and more reliable runtimes. We
demonstrate how our new approach improves both the clarity and
performance of several end-user written programs, including a fluid
flow solver and an interpolator for volumetric data.

Categories and Subject Descriptors D.3.3 [Programming Lan-

Manuel M. T. Chakravarty®

Gabriele Keller’ Simon Peyton Jones?

¥Microsoft Research Ltd
Cambridge, England

{simenpj }@microsoft.com

This second version of doubleZip runs as fast as a hand-written
imperative loop. Unfortunately, it is clutiered with explicit pattern
matching, bang patterns, and use of the force function. This clut-
ter is needed to guide the compiler towards efficient code, but it
obscures the algorithmic meaning of the source program. It also
demands a deeper understanding of the compilation method than
most users will have, and in the next section, we will see that these
changes add an implicit precondition that is not captured in the
function signature. The second major version of the library, Repa 2,
added support for efficient parallel stencil convolution, but at the
same time also increased the level of clutter needed to achieve effi-
cient code [8].

http://www.youtube.com/watch?v=YmZtP11mBho

guote on previous slide was from this paper

version

| use the most recent Repa (with recent Haskell platform)
cabal update
cabal install repa

There is also repa-examples, which pullsin
all Repa libraries

http://repa.ouroborus.net/

(I installed llvm and this gives some speedup, though not in my
case 40% as mentioned in PCPH.)

Repa Arrays

Repa arraysare wrappers around a linear structure that holds the element data.
The representation tag determines what structure holds the data.

Delayed Representations (functions that compute elements)
D -- Functions from indices to elements.
C -- Cursor functions.

Manifest Representations (real data)
U -- Adaptive unboxed vectors.

V -- Boxed vectors.

B -- Strict ByteStrings.

F -- Foreign memory buffers.

Meta Representations

P -- Arrays that are partitioned into several representations.

S -- Hints that computing this arrayis a small amount of work, so computation should be sequential rather than
parallel to avoid scheduling overheads.

| -- Hints that computing this array will be an unbalanced workload, so computation of successive elements should be
interleaved between the processors

X -- Arrays whose elements are all undefined.

10 Array representations!

e D — Delayed arrays (delayed) §3.1

® C— Cursored arrays (delayed) §4.4

e U — Adaptive unboxed vectors (manifest) §3.1
e V — Boxed vectors (manifest) §4.1

e B — Strict byte arrays (manifest) §4.1

o F — Foreign memory buffers (manifest) §4.1
e P — Partitioned arrays (meta) §4.2

e S — Smallness hints (meta) §5.1.1

e I —Interleave hints (meta) §5.2.1

e X — Undefined arrays (meta) §4.2

10 Array representations!

e D — Delayed arrays (delayed) §3.1

® C— Cursored arrays (delayed) §4.4

e U — Adaptive unboxed vectors (manifest) §3.1
e V — Boxed vectors (manifest) §4.1

e B — Strict byte arrays (manifest) §4.1

e F — Foreign memory buffers (manifest) §4.1
e P — Partitioned arrays (meta) §4.2

e S — Smallness hints (meta) §5.1.1

e I — Interleave hints (meta) §5.2.1

e X — Undefined arrays (meta) §4.2

But the 18 minute presentation at Haskell’12 makes it all make sense!!
Watch it!

http://www.youtube.com/watch?v=YmZtP11mBho

Type Indexing

data family Array rep sh e

.

type index giving representation

Type Indexing

data family Array rep sh e

shape

Type Indexing

data family Array rep sh e

N

element type

map

map
(Shape sh, Source r a) =>
(a -> b) -> Array r sh a -> Array D sh b

map

map
(Shape sh, Source r a) =>
(a -> b) -> Array r sh a -> Array D sh b

map f arr = case delay arr of ADelayed sh g ->
ADelayed sh (f . g)

Fusion

Delayed (and cursored) arrays enable fusion that
avoids intermediate arrays

User-defined worker functions can be fused

This is what gives tight loops in the final code

Parallel computation of array elements

computeP :: (Load rl sh e, Target r2 e, Source r2 e, Monad m)
=> Array rl sh e -> m (Array r2 sh e)

example

import Data.Array.Repa as R

transpose2P :: Monad m => Array U DIM2 Double -> m (Array U DIM2 Double)

example

import Data.Array.Repa as R

transpose2P :: Monad m => Array U DIM2 Double -> m (Array U DIM2 Double)

index type
SHAPE
EXTENT

example

import Data.Array.Repa as R

transpose2P :: Monad m => Array U DIM2 Double -> m (Array U DIM2 Double)

4 DIMO=27 (scalar)
DIM1 = DIMO :. Int
DIM2 =DIM1 :. Int

snhoc lists

Haskell lists are cons lists
1:2:3:[] isthesameas [1,2,3]

Repa uses snoc lists at type level for shape types
and at value level for shapes

DIM2=7Z7:.Int:. Int is a shape type

Z:i:.j readas (i,j) isanindex intoatwo dim. array

transpose 2D array in parallel

transposeZ2P
:: Monad m
=> Array U DIM2 Double
-> m (Array U DIM2 Double)

transpose2P arr
= arr deepSegArray
do computeUnboxedP

$ unsafeBackpermute ne
where swap (2 :. i :. 3j)

new_extent

w extent swap arr
Z :. 3J :. 1
swap (extent arr)

more general transpose
(on inner two dimensions)

transpose
: (Shape sh, Source r e) =>
Array r ((sh :. Int) :. Int) e

-> Array D ((sh :. Int) :. Int) e

more general transpose
(on inner two dimensions)
Is provided

transpose
:: (Shape sh, Source r e) =>
Array r ((sh :. Int) :. Int) e
-> Array D ((sh :. Int) :. Int) e

-

This type says an array with at least 2 dimensions.
The function is shape polymorphic

.

more general transpose
(on inner two dimensions)
Is provided

transpose
:: (Shape sh, Source r e) =>
Array r ((sh :. Int) :. Int) e
-> Array D ((sh :. Int) :. Int) e

N

/Functions with at-least constraints become a)
parallel map over the unspecified dimensions (called
rank generalisation)

\Important way to express parallel patterns)

Remember

Arrays of type (Array D sh a) or (Array C sh a) are not real arrays. They are represented
as functions that compute each element on demand. You need to

use computeS, computeP, computeUnboxedP and so on to actually evaluate the
elements.

(quote from

http://hackage.haskell.org/package/repa-3.4.0.1/docs/Data-Array-Repa.html
which has lots more good advice, including about compiler flags)

Example: sorting

Batcher’s bitonic sort
(see lecture from last week)

“hardware-like” data-independent

http://www.cs.kent.edu/~batcher/sort.pdf

bitonic sequence

inc (not decreasing)
then
dec (not increasing)

or a cyclic shift of such a sequence

123456789103864210

@2345678@108642 10

1 9

1.3456789.8642 10

1 2 9 10

1234567891038642 10
123 4 9 10 8 6

1234567891038642 10
12344 910 86 5

Swap!

1234567891038642 10
1234472 9 10 8 6 56

123456789103864210
12344210910 86356 738

123456789103864210
12344210910 86356 738

bitonic < bitonic

Butterfly

bitonic

|

Butterfly

/
X bit74<ic

bitoni

Itonic bitoni

|

onic

V
Il

bitonic merger

Question

What are the work and depth (or span) of
bitonic merger?

Making a recursive sorter (D&C)

Make a bitonic sequence using two
half-size sorters

Batcher’s sorter (bitonic)

Let’s try to write this sorter down
in Repa

bitonic merger

b e e e e e e

bitonic merger

b e e e e e e

whole array operation

dee for diamond

dee :: (Shape sh, Monad m) => (Int -> Int -> Int) -> (Int -> Int -> Int)
-> Int
-> Array U (sh :. Int) Int
->m (Array U (sh :. Int) Int)
dee £ g s arr = let sh = extent arr in computeUnboxedP $ fromFunction sh ixf
where
ixf (sh :. i) = if (testBit i s) then (g a b) else (f a b)
where
a=arr ! (sh :. i)
b=arr ! (sh :. (i "xor s2))

s2 = (1::Int) "shiftL s

assume input array has length a power of 2, s >0 in this and
later functions

dee for diamond

dee :: (Shape sh, Monad m) => (Int -> Int -> Int) -> (Int -> Int -> Int)
-> Int
-> Array U (sh :. Int) Int
->m (Array U (sh :. Int) Int)
dee £ g s arr = let sh = extent arr in computeUnboxedP $ fromFunction sh ixf
where
ixf (sh :. i) = if (testBit i s) then (g a b) else (f a b)
where
a=arr ! (sh :. i)
b=arr ! (sh :. (i "xor s2))

s2 = (1::Int) "shiftL s

dee fg 3 gives index i matched with index (i xor 8)

bitonicMerge n = compose [dee min max (n-i) | i <- [1..n]]

tmerge

vee

vee :: (Shape sh, Monad m) => (Int -> Int -> Int) -> (Int -> Int -> Int)
-> Int
-> Array U (sh :. Int) Int
->m (Array U (sh :. Int) Int)

vee £ g s arr = let sh = extent arr in computeUnboxedP $ fromFunction sh ixf

where
ixf (sh :. ix) = if (testBit ix s) then (g a b) else (f a b)

where
a =arr ! (sh :. ix)
b = arr ! (sh :. newix)

newix = flipLSBsTo s ix

vee

vee :: (Shape sh, Monad m) => (Int -> Int -> Int) -> (Int -> Int -> Int)
-> Int
-> Array U (sh :. Int) Int
->m (Array U (sh :. Int) Int)

vee £ g s arr = let sh = extent arr in computeUnboxedP $ fromFunction sh ixf

where
ixf (sh :. ix) = if (testBit ix s) then (g a b) else (f a b)

where
a =arr ! (sh :. ix)
b = arr ! (sh :. newix)

newix = flipLSBsTo s ix

veefg3 out(0) -> f a(0) a(7)
out(7)-> g a(7) a(0)
out(1)-> f a(1) a(6)
out(6)-> g a(6) a(1)

tmerge

tmerge n = compose $ vee min max (n-1) : [dee min max (n-i) | i <- [2..n]]

tsort n = compose [tmerge i | i <- [1..n]]

Question

What are work and depth of this sorter??

Performance is decent!

Initial benchmarking for 2720 Ints
Around 800ms on 4 cores on this laptop
Compares to around 1.6 seconds for Data.List.sort (which is seqgential)

Still slower than Persson’s non-entry from the sorting competition in the 2012 course
(which was at 400ms) -- a factor of a bit under 2, which is about what you would
expect when comparing Batcher’s bitonic sort to quicksort

Comments

Should be very scalable
Can probably be sped up! Need to add sequentialness ©

Similar approach might greatly speed up the FFT in repa-examples
(and I found a guy running an FFT in Haskell competition)

Note that this approach turned a nested algorithm into a flat one
Idiomatic Repa (written by experts) is about 3 times slower.

Genericity costs here!

Message: map, fold and scan are not enough. We need to think more
about higher order functions on arrays (e.g. with binary operators)

Repa’s real strength

Stencil computations!

[stencil2] 01 0
101
010 I]

do
(r, g, b) <- 1liftM (either (error . show) R.unzip3) readImageFromBMP "in.bmp"
[r’, g’, b’] <- mapM (applyStencil simpleStencil) [r, g, bl
writeImageToBMP "out.bmp" (U.zip3 r’ g’ b’)

Repa’s real strength

http://www.cse.chalmers.se/edu/year/2015/course/DAT280 Parallel_Fu
nctional_Programming/Papers/RepaTutoriall3.pdf

Nice success story at NYT

Haskell in the Newsroom

Haskell in Industry

stackoverflow

is your friend
See for example

http://stackoverflow.com/questions/14082158/idiomatic-option-pricing-and-risk-
using-repa-parallel-arrays?rq=1

Conclusions
Based on DPH technology
Good speedups!
Neat programs
Good control of Parallelism

BUT CACHE AWARENESS needs to be tackled

Conclusions

Development seems to be happening in
Accelerate, which now works for both

multicore and GPU (work ongoing)

Array representations for parallel functional
programming is an important, fun and
frustrating research topic ©

Questions to think about

What is the right set of whole array operations?

(remember Backus from the first lecture)

