
Parallel Functional Programming
Repa

Mary	Sheeran

http://www.cse.chalmers.se/edu/course/pfp

Flat

Nested

Amorphous

RepaAccelerate

Data Parallel

Haskell

Embedded
(2nd class)

Full
(1st class)

Slide	borrowed	 from	G.	Keller’s	lecture

DPH

Parallel	arrays																						[:	e	:]																				(which	can	contain	arrays)

DPH

Parallel	arrays																						[:	e	:]																				(which	can	contain	arrays)

Expressing	parallelism			=				applying	collective	operations	to	parallel	arrays

Note:	demand	 for	any element	in	a	parallel	array	results	in	eval of	all	elements

DPH	array	operations

(!:)	::	[:a:]	->	Int ->	a
sliceP ::	[:a:]	->	(Int,Int)	 ->	[:a:]
replicateP ::	Int ->	a	->	[:a:]
mapP ::	(a->b)	->	[:a:]	->	[:b:]
zipP ::	[:a:]	->	[:b:]	->	[:(a,b):]
zipWithP ::	(a->b->c)	->	[:a:]	->	[:b:]	->	[:c:]
filterP ::	(a->Bool)	->	[:a:]	->	[:a:]
concatP ::	[:[:a:]:]	->	[:a:]
concatMapP ::	(a	->	[:b:])	->	[:a:]	->	[:b:]
unconcatP ::	[:[:a:]:]	->	[:b:]	->	[:[:b:]:]
transposeP ::	[:[:a:]:]	->	[:[:a:]:]
expandP ::	[:[:a:]:]	->	[:b:]	->	[:b:]
combineP ::	[:Bool:]	->	[:a:]	->	[:a:]	->	[:a:]
splitP ::	[:Bool:]	->	[:a:]	->	([:a:],	[:a:])

Examples

svMul :: [:(Int,Float):] -> [:Float:] -> Float
svMul sv v = sumP [: f*(v !: i) | (i,f) <- sv :]

smMul :: [:[:(Int,Float):]:] -> [:Float:] -> [:Float:]
smMul sm v = [: svMul row v | row <- sm :]

Nested	data	parallelism
Parallel	op	(svMul)	on	each	row

Data	parallelism
Perform	same computation on	a	collection of	differing data	values

examples:		HPF	(High	Performance	Fortran)												
CUDA

Both support	only flat	data	parallelism

Flat		:	each of	the	individual computationson	(array)		elements	is	
sequential

those computations don’tneed to	communicate
parallel computations don’t spark	further parallel computations

API	for	purely functional,	collectiveoperations	over	dense,	
rectangular,	multi-dimensional arrays supporting shape
polymorphism

ICFP	2010

Ideas

Purely functional array interface	using collective (whole array)	
operations	like	map,	fold and	permutations	can
– combine efficiency and	clarity
– focus attention on	structure of	algorithm,	away from	low level details

Influenced by	work	on	algorithmic skeletons based on	Bird	
Meertens formalism			(look	for	PRG-56)

Provides	shape polymorphismnot	in	a	standalone specialist	
compiler like	SAC,	but using the	Haskell type system

terminology

Regular arrays
dense,	rectangular,	most elements	non-zero

shape polymorphic
functions work	over	arrays of	arbitrary dimension

terminology

Regular arrays
dense,	rectangular,	most elements	non-zero

shape polymorphic
functions work	over	arrays of	arbitrary dimension

note:	the	arrays are	purely
functional and	immutable

All	elements	of	an	array are	
demanded at	once ->		parallelism

P	processing	elements,	n	array	
elements	=>			n/P	consecutive	
elements	on	each	proc.	element

data Array sh e = Manifest sh (Vector e)
| Delayed sh (sh -> e)

data Array sh e = Manifest sh (Vector e)
| Delayed sh (sh -> e)

class Shape sh where
toIndex :: sh -> sh -> Int
fromIndex :: sh -> Int -> sh
size :: sh -> Int
...more operations...

data DIM1 = DIM1 !Int
data DIM2 = DIM2 !Int !Int
...more dimensions...

index :: Shape sh => Array sh e -> sh -> e
index (Delayed sh f) ix = f ix
index (Manifest sh vec) ix = indexV vec (toIndex sh ix)

delay :: Shape sh => Array sh e -> (sh, sh -> e)
delay (Delayed sh f) = (sh, f)
delay (Manifest sh vec)
= (sh, \ix -> indexV vec (toIndex sh ix))

map :: Shape sh => (a -> b) -> Array sh a -> Array sh b
map f arr = let (sh, g) = delay arr

in Delayed sh (f . g)

zipWith :: Shape sh => (a -> b -> c)
-> Array sh a -> Array sh b -> Array sh c

zipWith f arr1 arr2
= let (sh1, f1) = delay arr1

(_sh2, f2) = delay arr2
get ix = f (f1 ix) (f2 ix)

in Delayed sh1 get

force :: Shape sh => Array sh e -> Array sh e
force arr
= unsafePerformIO
$ case arr of

Manifest sh vec
-> return $ Manifest sh vec
Delayed sh f
-> do mvec <- unsafeNew (size sh)

fill (size sh) mvec (f . fromIndex sh)
vec <- unsafeFreeze mvec
return $ Manifest sh vec

Delayed	(or	pull)	arrays						great	idea!

Represent	array	as	function from	index	to	value

Not	a	new	idea
Originated	in	Pan in	the	functional	world	I	think

See	also
Compiling	Embedded	Langauges

But	this	is	100*	slower	than	expected

doubleZip :: Array DIM2 Int -> Array DIM2 Int
-> Array DIM2 Int

doubleZip arr1 arr2
= map (* 2) $ zipWith (+) arr1 arr2

Fast	but	cluttered
doubleZip arr1@(Manifest !_ !_) arr2@(Manifest !_ !_)
= force $ map (* 2) $ zipWith (+) arr1 arr2

Things	moved	on!
Repa from	ICFP	2010	had	ONE	type	of	array	(that	could	be	either	
delayed	or	manifest,	like	in	many	EDSLs)

A	paper	from	Haskell’11	showed	efficient	parallel	stencil	
convolution

http://www.cse.unsw.edu.au/~keller/Papers/stencil.pdf

Fancier	array	type		(Repa 2)

Fancier	array	type

But	you	need	to	be	a	guru	to	get	good	performance!

Put	Array	representation	into	the	type!

Repa 3				(Haskell’12)

http://www.youtube.com/watch?v=YmZtP11mBho

quote	on	previous	slide	was	from	this	paper

version
I	use the	most recent	Repa	(with recent	Haskell platform)
cabal	update
cabal	install repa

There is also repa-examples,	which pulls in
all Repa libraries

http://repa.ouroborus.net/

(I	installed llvm and	this gives	some speedup,	though not	in	my	
case 40%	as	mentioned in	PCPH.)

Repa arrays	are	wrappers	around	a	linear	structure	that	holds	 the	element	data.

The	representation	tag	determines	what	structure	holds	 the	data.

Delayed	Representations	(functions	 that	compute	elements)
D	-- Functions	 from	indices	 to	elements.
C	-- Cursor	 functions.

Manifest	Representations	(real	data)
U	-- Adaptive	unboxed	vectors.
V	-- Boxed	vectors.
B	-- Strict	ByteStrings.
F	-- Foreign	memory	buffers.

Meta	Representations
P	-- Arrays	that	are	partitioned	into	several	representations.
S	-- Hints	that	computing	 this	array	is	a	small	amount	of	work,	so	computation	should	 be	sequential	 rather	than

parallel	to	avoid	scheduling	 overheads.
I	-- Hints	that	computing	this	array	will	be	an	unbalanced	workload,	 so	computation	of	successive	 elements	should	 be

interleaved	between	the	processors
X	-- Arrays	whose	elements	are	all	undefined.

Repa Arrays

10	Array	representations!

10	Array	representations!

http://www.youtube.com/watch?v=YmZtP11mBho

But	the	18	minute	presentation	at	Haskell’12	makes	it	all	make	sense!!
Watch	it!

Type	Indexing

data	family	Array	rep	sh e

type	index	giving	representation

Type	Indexing

data	family	Array	rep	sh e

shape

Type	Indexing

data	family	Array	rep	sh e

element	type

map

map
:: (Shape sh, Source r a) =>

(a -> b) -> Array r sh a -> Array D sh b

map

map
:: (Shape sh, Source r a) =>

(a -> b) -> Array r sh a -> Array D sh b

map f arr = case delay arr of ADelayed sh g ->
ADelayed sh (f . g)

Fusion

Delayed	(and	cursored)	arrays	enable	fusion	that	
avoids	intermediate	arrays

User-defined	worker	functions	can	be	fused

This	is	what	gives	tight	loops	in	the	final	code

Parallel	computation	of	array	elements

computeP :: (Load r1 sh e, Target r2 e, Source r2 e, Monad m)
=> Array r1 sh e -> m (Array r2 sh e)

example

transpose2P :: Monad m => Array U DIM2 Double -> m (Array U DIM2 Double)

import Data.Array.Repa as R

example

transpose2P :: Monad m => Array U DIM2 Double -> m (Array U DIM2 Double)

import Data.Array.Repa as R

index	type
SHAPE
EXTENT

example

transpose2P :: Monad m => Array U DIM2 Double -> m (Array U DIM2 Double)

import Data.Array.Repa as R

DIM0	=	Z							(scalar)
DIM1	=	DIM0	:.	Int
DIM2	=	DIM1	:.	Int

snoc lists
Haskell lists	are	cons lists
1:2:3:[]				is	the	same	as		[1,2,3]

Repa	uses snoc lists	at	type level for	shape types
and	at	value level for	shapes

DIM2	=	Z	:.	Int :.	Int is	a	shape type

Z	:.	i	:.	j							read	as		(i,j)				is	an	index	into a	two dim.	array

transpose	2D	array	in	parallel

transpose2P
:: Monad m
=> Array U DIM2 Double
-> m (Array U DIM2 Double)

transpose2P arr
= arr `deepSeqArray`

do computeUnboxedP
$ unsafeBackpermute new_extent swap arr

where swap (Z :. i :. j) = Z :. j :. i
new_extent = swap (extent arr)

more general	transpose	
(on	inner	two dimensions)

transpose
:: (Shape sh, Source r e) =>

Array r ((sh :. Int) :. Int) e
-> Array D ((sh :. Int) :. Int) e

more general	transpose	
(on	inner	two dimensions)

is	provided

This	type says an	array with	at	least 2	dimensions.
The	function is	shape polymorphic

more general	transpose	
(on	inner	two dimensions)

is	provided

Functionswith	at-least constraints become a	
parallel map over	the	unspecified dimensions		(called
rank	generalisation)

Important way to	express	parallel patterns

Remember
Arrays	of	type (Array	D	sh a) or (Array	C	sh a) are not	real	arrays.	They	are	represented	
as	functions	 that	compute	each	element	on	demand.	You	need	to	
use computeS, computeP, computeUnboxedP and	so	on	to	actually	evaluate	the	
elements.

(quote	 from
http://hackage.haskell.org/package/repa-3.4.0.1/docs/Data-Array-Repa.html
which	has	lots	more	good	advice,	including	 about	compiler	 flags)

Example:	sorting

Batcher’s	bitonic sort		
(see	lecture	from	last	week)

“hardware-like”		data-independent

http://www.cs.kent.edu/~batcher/sort.pdf

bitonic sequence

inc (not decreasing)
then

dec (not increasing)

or a cyclic shift of such a sequence

1 2 3 4 5 6 7 8 9 10 8 6 4 2 1 0

1 2 3 4 5 6 7 8 9 10 8 6 4 2 1 0

1 9

1 2 3 4 5 6 7 8 9 10 8 6 4 2 1 0

1 2 9 10

1 2 3 4 5 6 7 8 9 10 8 6 4 2 1 0

1 2 3 4 9 10 8 6

1 2 3 4 5 6 7 8 9 10 8 6 4 2 1 0

1 2 3 4 4 9 10 8 6 5

Swap!

1 2 3 4 5 6 7 8 9 10 8 6 4 2 1 0

1 2 3 4 4 2 9 10 8 6 5 6

1 2 3 4 5 6 7 8 9 10 8 6 4 2 1 0

1 2 3 4 4 2 1 0 9 10 8 6 5 6 7 8

1 2 3 4 5 6 7 8 9 10 8 6 4 2 1 0

1 2 3 4 4 2 1 0 9 10 8 6 5 6 7 8

bitonic bitonic≤

Butterfly

bitonic

Butterfly

bitonic
bitonic

bitonic
>=

bitonic merger

Question

What are the work and depth (or span) of
bitonic merger?

Making a recursive sorter (D&C)

Make a bitonic sequence using two
half-size sorters

Batcher’s sorter (bitonic)

S

S
r
e
v
e
r
s
e

M

Let’s try to write this sorter down
in Repa

bitonic merger

bitonic merger

whole	array	operation

dee for	diamond

dee :: (Shape sh, Monad m) => (Int -> Int -> Int) -> (Int -> Int -> Int)
-> Int
-> Array U (sh :. Int) Int
-> m (Array U (sh :. Int) Int)

dee f g s arr = let sh = extent arr in computeUnboxedP $ fromFunction sh ixf
where

ixf (sh :. i) = if (testBit i s) then (g a b) else (f a b)
where

a = arr ! (sh :. i)
b = arr ! (sh :. (i `xor` s2))
s2 = (1::Int) `shiftL` s

assume	input	array	has	length	a	power	of	2,	s	>	0			in	this	and	
later	functions

dee for	diamond

dee :: (Shape sh, Monad m) => (Int -> Int -> Int) -> (Int -> Int -> Int)
-> Int
-> Array U (sh :. Int) Int
-> m (Array U (sh :. Int) Int)

dee f g s arr = let sh = extent arr in computeUnboxedP $ fromFunction sh ixf
where

ixf (sh :. i) = if (testBit i s) then (g a b) else (f a b)
where

a = arr ! (sh :. i)
b = arr ! (sh :. (i `xor` s2))
s2 = (1::Int) `shiftL` s

dee	f	g	3												gives						index	i matched	with						index		(i xor 8)	

bitonicMerge n = compose [dee min max (n-i) | i <- [1..n]]

tmerge

vee

vee :: (Shape sh, Monad m) => (Int -> Int -> Int) -> (Int -> Int -> Int)
-> Int
-> Array U (sh :. Int) Int
-> m (Array U (sh :. Int) Int)

vee f g s arr = let sh = extent arr in computeUnboxedP $ fromFunction sh ixf
where

ixf (sh :. ix) = if (testBit ix s) then (g a b) else (f a b)
where
a = arr ! (sh :. ix)
b = arr ! (sh :. newix)
newix = flipLSBsTo s ix

vee

vee :: (Shape sh, Monad m) => (Int -> Int -> Int) -> (Int -> Int -> Int)
-> Int
-> Array U (sh :. Int) Int
-> m (Array U (sh :. Int) Int)

vee f g s arr = let sh = extent arr in computeUnboxedP $ fromFunction sh ixf
where

ixf (sh :. ix) = if (testBit ix s) then (g a b) else (f a b)
where
a = arr ! (sh :. ix)
b = arr ! (sh :. newix)
newix = flipLSBsTo s ix

vee f g 3 out(0) -> f a(0) a(7)
out(7) -> g a(7) a(0)
out(1) -> f a(1) a(6)
out(6) -> g a(6) a(1)

tmerge

tmerge n = compose $ vee min max (n-1) : [dee min max (n-i) | i <- [2..n]]

Obsidian

tsort n = compose [tmerge i | i <- [1..n]]

Question

What	are	work	and	depth	of	this	sorter??

Performance	is	decent!

Initial	benchmarking	 for	2^20	Ints

Around	800ms	on	4	cores	on	this	laptop

Compares	to	around	1.6	seconds	for	Data.List.sort (which	is	seqential)

Still	slower	than	Persson’s non-entry	from	the	sorting	competition	 in	the	2012	course
(which	was	at	400ms) -- a	factor	of	a	bit	under	2,	which	is	about	what	you	would

expect	when	comparing	Batcher’s	bitonic sort	to	quicksort

Comments
Should	 be	very	scalable

Can	probably	be	sped	up!			Need	to	add	sequentialness J

Similar	approach	might	greatly	speed	up	the	FFT	in	repa-examples
(and	I	found	 a	guy	 running	 an	FFT	in	Haskell	competition)

Note	that	this	approach	turned	a	nested	algorithm	 into	a	flat	one

Idiomatic	Repa (written	by	experts)	is	about	3	times	slower.
Genericity	costs	here!		

Message:				map,	fold	and	scan	are	not	enough.	We	need	to	think	more
about	higher	order	 functions	on	arrays	(e.g.	with	binary	operators)

Repa’s real	strength

Stencil	computations!

0 1 0

1 0 1

0 1 0

Figure 2: A simple example stencil.

makeStencil2 (Z :. 3 :. 3)

(\ix -> case ix of

Z :. -1 :. 0 -> Just 1

Z :. 0 :. -1 -> Just 1

Z :. 0 :. 1 -> Just 1

Z :. 1 :. 0 -> Just 1

_ -> Nothing)

Figure 3: A lambda modelling the simple stencil in figure 2.

We see that Repa provides the function makeStencil2, for specifying a 2-
dimensional stencil of a given dimension, here 3 by 3. Since this tutorial focuses
on image manipulation, we will only concern ourselves with the special case of
2-dimensional stencils.

This way of making stencils from lambdas is however somewhat cumbersome.
It is not immediately apparent from looking at the lambda in 3 that it actually
represents the stencil in figure 2. To remedy this, Repa provides us with the
convenience method stencil2, which allows us to specify stencils like in figure
4.

[stencil2| 0 1 0

1 0 1

0 1 0 |]

Figure 4: A stencil defined using the QuasiQuotes language extension.

If this syntax looks foreign, do not fret. Just know that it exploits a language
extension called QuasiQuotes, and that by putting the pragma:

{-# LANGUAGE QuasiQuotes #-}

at the top of your source file, the code in figure 4 will be preprocessed and
converted into the code in figure 3 during compile time.

3.2.2 Applying stencils

So now that we know how to specify stencils, it only remains to apply them
to something. Let us keep working with our simple stencil from the previous
section, and see what happens when we apply it to an actual image.

Repa allows us to read bitmaps into arrays using the readImageFromBMP func-
tion, which reads a bitmap from a relative file path and produces a two-dimensional

6

array of Word8 triples. Each of these triples represents a pixel in the source im-
age, and the individual words in these triples represent the red, green and blue
components of the pixel.

Figure 5: Example image.

To read in the image in figure 5, the following code is su�cient:

do

arrImage <- liftM (either (error . show) id) $

readImageFromBMP "image.bmp"

This gives us an array of Word8 triples. We use the run function for the Either
monad to handle the case when reading the image results in an error.

makeStencil2 :: Num a =>

Int -> Int ->

(DIM2 -> Maybe a) ->

Stencil DIM2 a

mapStencil2 :: Source r a =>

Boundary a ->

Stencil DIM2 a ->

Array r DIM2 a ->

Array PC5 DIM2 a

If we look at the types of makeStencil2 and the corresponding mapStencil2, we
see that the type of the array we map our stencil over must contain elemnts of
the same type as we specified in our stencil. We also see that mapping a stencil
requires specifying what happens in the boundaries of the array. In our case,
it is su�cient to use (BoundConst 0), which means that we pretend that there
are zeroes everywhere outside the boundaries of our array.

To make our integer stencil work for arrays of Word8:s, we will unzip the array
of triples into three separate arrays of numbers. After acquiring three separate
arrays containing the red, blue and green components, we will map our stencil
on these arrays separately as such:

do

(r, g, b) <- liftM (either (error . show) R.unzip3) readImageFromBMP "in.bmp"

[r’, g’, b’] <- mapM (applyStencil simpleStencil) [r, g, b]

writeImageToBMP "out.bmp" (U.zip3 r’ g’ b’)

After acquiring our transformed component arrays, we promptly zip them back

7

Repa’s real	strength

array of Word8 triples. Each of these triples represents a pixel in the source im-
age, and the individual words in these triples represent the red, green and blue
components of the pixel.

Figure 5: Example image.

To read in the image in figure 5, the following code is su�cient:

do

arrImage <- liftM (either (error . show) id) $

readImageFromBMP "image.bmp"

This gives us an array of Word8 triples. We use the run function for the Either
monad to handle the case when reading the image results in an error.

makeStencil2 :: Num a =>

Int -> Int ->

(DIM2 -> Maybe a) ->

Stencil DIM2 a

mapStencil2 :: Source r a =>

Boundary a ->

Stencil DIM2 a ->

Array r DIM2 a ->

Array PC5 DIM2 a

If we look at the types of makeStencil2 and the corresponding mapStencil2, we
see that the type of the array we map our stencil over must contain elemnts of
the same type as we specified in our stencil. We also see that mapping a stencil
requires specifying what happens in the boundaries of the array. In our case,
it is su�cient to use (BoundConst 0), which means that we pretend that there
are zeroes everywhere outside the boundaries of our array.

To make our integer stencil work for arrays of Word8:s, we will unzip the array
of triples into three separate arrays of numbers. After acquiring three separate
arrays containing the red, blue and green components, we will map our stencil
on these arrays separately as such:

do

(r, g, b) <- liftM (either (error . show) R.unzip3) readImageFromBMP "in.bmp"

[r’, g’, b’] <- mapM (applyStencil simpleStencil) [r, g, b]

writeImageToBMP "out.bmp" (U.zip3 r’ g’ b’)

After acquiring our transformed component arrays, we promptly zip them back

7

into an image and write it to a bitmap using the Repa provided writeImageToBMP,
resulting in the image in figure 6.

Figure 6: The stencil in figure 2 applied to the image in figure 5.

Our filter from the stencil in figure 2 has successfully spiced up the colors of our
example image.

Let us now look at a couple of example stencils that actually result in something
useful.

3.3 Some examples

Now that we know how to handle stencil convolution in Repa, let’s try it out
on a couple of real examples.

We are going to experiment with two fundamental image filters and their cor-
responding stencils, Gaussian blur and simple edge detection.

In order to easily experiment with di↵erent filters and stencils, let us use the
primitives provided by Repa to define a couple of useful combinators.

First o↵, we represent our images as 2-dimensional arrays of numerals. However,
the Word8 type in which images are represented when read from files does not
lend itself very well to non-integer arithmetic, so let us define images as arrays
of floating point numbers, and a way to easily switch between representations.

Converting between di↵erent numeric representations in Haskell can be a real
pain, but fortunately the authors of Repa have provided us with a way of doing
it in their example files:

type Image = Array U DIM2 Double

promote :: Array U DIM2 Word8 -> IO (Image)

promote = computeP . R.map ffs

where

ffs :: Word8 -> Double

ffs x = fromIntegral (fromIntegral x :: Int)

demote :: Image -> IO (Array U DIM2 Word8)

demote = computeP . R.map ffs

where

ffs :: Double -> Word8

8

http://www.cse.chalmers.se/edu/year/2015/course/DAT280_Parallel_Fu
nctional_Programming/Papers/RepaTutorial13.pdf

Nice	success	story	at	NYT

Haskell	in	the	Newsroom

Haskell	in	Industry

stackoverflow
is	your	 friend

See	for	example

http://stackoverflow.com/questions/14082158/idiomatic-option-pricing-and-risk-
using-repa-parallel-arrays?rq=1

Conclusions
Based on	DPH	technology

Good	speedups!

Neat programs

Good	control of	Parallelism

BUT		CACHE	AWARENESS	needs	to	be	tackled

Conclusions

Development seems to	be	happening	in	
Accelerate,	which nowworks for	both
multicore and	GPU	(work ongoing)

Array	representations	for	parallel	functional	
programming	is	an	important,	fun	and	
frustrating	research	topicJ

Questions	to	think	about

What	is	the	right	set	of	whole	array	operations?

(remember	Backus	from	the	first	lecture)

