Finite Automata Theory and Formal Languages TMV027/DIT321– LP4 2017

Lecture 9 Ana Bove

April 20th 2017

Overview of today's lecture:

- Equivalence between FA and RE: from RE to FA;
- Pumping Lemma for RL;
- Closure properties of RL.

Recap: Regular Expressions

- Algebraic representation of (regular) languages;
- $R, S ::= \emptyset \mid \epsilon \mid a \mid R + S \mid RS \mid R^* \dots$
- ... representing the languages Ø, {ε}, {a}, L(R) ∪ L(S), L(R)L(S) and L(R)* respectively;
- Algebraic laws for RE and how to prove them;
- How to transform a FA into a RE:
 - By eliminating states;
 - With a system of linear equations and Arden's lemma.

From Regular Expressions to Finite Automata

Proposition: Every language defined by a RE is accepted by a FA.

Proof: Let $\mathcal{L} = \mathcal{L}(R)$ for some RE *R*.

By induction on R we construct a ϵ -NFA E with only one final state and no arcs into the initial state or out of the final state.

Moreover, *E* is such that $\mathcal{L} = \mathcal{L}(E)$.

Base cases are the RE \emptyset , ϵ and $a \in \Sigma$.

The corresponding ϵ -NFA recognising the languages \emptyset , $\{\epsilon\}$ and $\{a\}$ are:

How to Prove that a Language is NOT Regular?

In a FA with n states, any path

 $q_1 \xrightarrow{a_1} q_2 \xrightarrow{a_2} q_3 \xrightarrow{a_3} \dots \xrightarrow{a_{m-1}} q_m \xrightarrow{a_m} q_{m+1}$

has a loop if $m \ge n$.

That is, we have i < j such that $q_i = q_j$ in the path above.

This is an application of the *Pigeonhole Principle*.

April 20th 2017, Lecture 9

TMV027/DIT32

How to Prove that a Language is NOT Regular?

Example: Let us prove that $\mathcal{L} = \{0^m 1^m | m \ge 0\}$ is not a RL.

Let us assume it is: then $\mathcal{L} = \mathcal{L}(A)$ for some FA A with n states, n > 0.

Let $k \ge n > 0$ and let $w = 0^k 1^k \in \mathcal{L}$.

Then there must be an accepting path $q_0 \stackrel{\scriptscriptstyle{W}}{
ightarrow} q_f \in F.$

Since $k \ge n$, there is a loop (pigeonhole principle) when reading the 0's.

Then w = xyz with $|xy| = j \leqslant n$, $y \neq \epsilon$ and $z = 0^{k-j}1^k$ such that

$$q_0 \stackrel{x}{\rightarrow} q_I \stackrel{y}{\rightarrow} q_I \stackrel{z}{\rightarrow} q_f \in F$$

Observe that the following path is also an accepting path

$$q_0 \stackrel{x}{
ightarrow} q_l \stackrel{z}{
ightarrow} q_f \in F$$

However y must be of the form 0^i with i > 0 hence $xz = 0^{k-i}1^k \notin \mathcal{L}$.

This contradicts the fact that A accepts \mathcal{L} .

April 20th 2017, Lecture 9

The Pumping Lemma for Regular Languages

Theorem: Let \mathcal{L} be a RL.

Then, there exists a constant n—which depends on \mathcal{L} —such that for every string $w \in \mathcal{L}$ with $|w| \ge n$, it is possible to break w into 3 strings x, y and z such that w = xyz and

y ≠ ε;
|xy| ≤ n;
∀k ≥ 0. xy^kz ∈ L.

April 20th 2017, Lecture 9

TMV027/DIT321

Proof of the Pumping Lemma

Assume we have a FA A that accepts the language, then $\mathcal{L} = \mathcal{L}(A)$.

Let n be the number of states in A.

Then any path of length $m \ge n$ has a loop.

Let us consider $w = a_1 a_2 \dots a_m \in \mathcal{L}$.

We have an accepting path and a loop such that

$$q_0 \stackrel{x}{\rightarrow} q_l \stackrel{y}{\rightarrow} q_l \stackrel{z}{\rightarrow} q_f \in F$$

with $w = xyz \in \mathcal{L}$, $y \neq \epsilon$, $|xy| \leq n$.

Then we also have

 $q_0 \stackrel{x}{
ightarrow} q_l \stackrel{y^k}{
ightarrow} q_l \stackrel{z}{
ightarrow} q_f \in F$

for any k, that is, $\forall k \ge 0$. $xy^k z \in \mathcal{L}$.

Example: Application of the Pumping Lemma

We use the Pumping lemma to prove that $\mathcal{L} = \{0^m 1^m | m \ge 0\}$ is not a RL.

We assume it is. Then the Pumping lemma applies.

Let *n* be the constant given by the lemma and let $w = 0^n 1^n \in \mathcal{L}$, then $|w| \ge n$.

By the lemma we know that w = xyz with $y \neq \epsilon$, $|xy| \leq n$ and $\forall k \geq 0$. $xy^k z \in \mathcal{L}$.

Since $y \neq \epsilon$ and $|xy| \leq n$, we know that $y = 0^i$ with $i \geq 1$.

However, we have a contradiction since $xy^k z \notin \mathcal{L}$ for $k \neq 1$ since it either has too few 0's (k = 0) or too many (k > 1).

Note: This is connected to the fact that a FA has *finite memory*! If we could build a machine with infinitely many states it would be able to recognise the language.

April 20th 2017, Lecture 9

TMV027/DIT321

10/20

Example: Application of the Pumping Lemma

Example: Let us prove that $\mathcal{L} = \{0^i 1^j | i \leq j\}$ is not a RL.

Let us assume it is, hence the Pumping lemma applies.

Let *n* be given by the Pumping lemma and let $w = 0^n 1^{n+1} \in \mathcal{L}$, hence $|w| \ge n$.

Then we know that w = xyz with $y \neq \epsilon$, $|xy| \leq n$ and $\forall k \geq 0$. $xy^k z \in \mathcal{L}$.

Since $y \neq \epsilon$ and $|xy| \leq n$, we know that $y = 0^r$ with $r \geq 1$.

However, we have a contradiction since $xy^k z \notin \mathcal{L}$ for k > 2 since it will have more 0's than 1's.

(Even for k = 2 if r > 1.)

Exercise: What about the languages $\{0^i 1^j \mid i \ge j\}$, $\{0^i 1^j \mid i > j\}$ and $\{0^i 1^j \mid i \ne j\}$?

Pumping Lemma is not a Sufficient Condition

By showing that the Pumping lemma does not apply to a certain language \mathcal{L} we prove that \mathcal{L} is not regular.

However, if the Pumping lemma *does* apply to \mathcal{L} , we *cannot* conclude whether \mathcal{L} is regular or not!

Example: We know $\mathcal{L} = \{b^m c^m \mid m \ge 0\}$ is not regular.

Let us consider $\mathcal{L}' = a^+ \mathcal{L} \cup (b+c)^*$.

Using clousure properties (to come later) we can prove that \mathcal{L}' is not regular.

However, the Pumping lemma does apply for \mathcal{L}' with n = 1.

This shows the Pumping lemma is not a sufficient condition for a language to be regular.

April 20th 2017, Lecture 9

TMV027/DIT321

Closure Properties for Regular Languages

Let \mathcal{M} and \mathcal{N} be RL. Then $\mathcal{M} = \mathcal{L}(R) = \mathcal{L}(D)$ and $\mathcal{N} = \mathcal{L}(S) = \mathcal{L}(F)$ for RE R and S, and DFA D and F.

We have seen that RL are closed under the following operations:

Union:	$\mathcal{M} \cup \mathcal{N} = \mathcal{L}(R+S) \text{ or } \mathcal{M} \cup \mathcal{N} = \mathcal{L}(D \uplus F) \text{ (s.21, 1.5);}$
Complement:	$\overline{\mathcal{M}}=\mathcal{L}(\overline{D})$ (slide 23, lec. 5)
Intersection:	$\mathcal{M} \cap \mathcal{N} = \overline{\overline{\mathcal{M}} \cup \overline{\mathcal{N}}} \text{ or } \mathcal{M} \cap \mathcal{N} = \mathcal{L}(D \times F) \text{ (s.20, 1.5);}$
Difference:	$\mathcal{M}-\mathcal{N}=\mathcal{M}\cap\overline{\mathcal{N}};$
Concatenation:	$\mathcal{MN}=\mathcal{L}(RS);$
Closure:	$\mathcal{M}^* = \mathcal{L}(R^*).$

and prove that $\mathcal{L}(pre(R)) = \operatorname{Prefix}(\mathcal{L}(R))$.

Then, if $\mathcal{L} = \mathcal{L}(R)$ for some RE R then $\operatorname{Prefix}(\mathcal{L}) = \operatorname{Prefix}(\mathcal{L}(R)) = \mathcal{L}(\operatorname{pre}(R))$.

TMV027/DIT32

Closure under Reversal

We define the function:

$$\begin{array}{ll} _^{\mathsf{r}} : RE \to RE \\ \emptyset^{\mathsf{r}} = \emptyset & (R_1 + R_2)^{\mathsf{r}} = R_1^{\mathsf{r}} + R_2^{\mathsf{r}} \\ \epsilon^{\mathsf{r}} = \epsilon & (R_1 R_2)^{\mathsf{r}} = R_2^{\mathsf{r}} R_1^{\mathsf{r}} \\ a^{\mathsf{r}} = a & (R^*)^{\mathsf{r}} = (R^{\mathsf{r}})^* \end{array}$$

Theorem: If \mathcal{L} is regular so is \mathcal{L}^{r} .

```
Proof: (See theo. 4.11, pages 139–140).
```

Let *R* be a RE such that $\mathcal{L} = \mathcal{L}(R)$. We need to prove by induction on *R* that $\mathcal{L}(R^r) = (\mathcal{L}(R))^r$. Hence $\mathcal{L}^r = (\mathcal{L}(R))^r = \mathcal{L}(R^r)$ and \mathcal{L}^r is regular.

Example: The reverse of the language defined by $(0+1)^*0$ can be defined by $0(0+1)^*$.

April 20th 2017, Lecture 9

Closure under Reversal

Another way to prove this result is by constructing a ϵ -NFA for \mathcal{L}^{r} .

Proof: Let $N = (Q, \Sigma, \delta_N, q_0, F)$ be a NFA such that $\mathcal{L} = \mathcal{L}(N)$.

Define a ϵ -NFA $E = (Q \cup \{q\}, \Sigma, \delta_E, q, \{q_0\})$ with $q \notin Q$ and δ_E such that

$$r \in \delta_E(s, a)$$
 iff $s \in \delta_N(r, a)$ for $r, s \in Q$
 $r \in \delta_E(q, \epsilon)$ iff $r \in F$

Using Closure Properties

Example: Consider \mathcal{L}_1 and \mathcal{L}_2 such that \mathcal{L}_1 is regular, \mathcal{L}_2 is not regular but $\mathcal{L}_1 \cap \mathcal{L}_2$ is regular.

Is $\mathcal{L}_1 \cup \mathcal{L}_2$ is regular?

Let us assume that $\mathcal{L}_1 \cup \mathcal{L}_2$ is regular.

Then $(\mathcal{L}_1 \cup \mathcal{L}_2 - \mathcal{L}_1) \cup (\mathcal{L}_1 \cap \mathcal{L}_2)$ should also be regular.

But this is actually \mathcal{L}_2 which is not regular!

We arrive to a contradiction.

Hence $\mathcal{L}_1 \cup \mathcal{L}_2$ cannot be regular.

April 20th 2017, Lecture 9

MV027/DIT32

18/20

Overview of next Week

Mon 24	Tue 25	Wed 26	Thu 27	Fri 28
	Ex 10-12 EA		Ex 10-12 HA2	
	RL.		RL.	
Lec 13-15 HB3			Lec 13-15 HB3	
RL.			CFG.	
15-17 6213 6215		15-17 EL41		
Individual help		Consultation		

Overview of Next Lecture

Sections 4.3-4.4:

- Decision properties for RL;
- Equivalence of RL;
- Minimisation of automata.

April 20th 2017, Lecture 9

TMV027/DIT32

20/20