
Finite Automata Theory and Formal Languages

TMV027/DIT321– LP4 2017

Lecture 9
Ana Bove

April 20th 2017

Overview of today’s lecture:

Equivalence between FA and RE: from RE to FA;

Pumping Lemma for RL;

Closure properties of RL.

Recap: Regular Expressions

Algebraic representation of (regular) languages;

R ,S ::= ∅ | ǫ | a | R + S | RS | R∗ ...

... representing the languages ∅, {ǫ}, {a},L(R) ∪ L(S),L(R)L(S)
and L(R)∗ respectively;

Algebraic laws for RE and how to prove them;

How to transform a FA into a RE:

By eliminating states;

With a system of linear equations and Arden’s lemma.

April 20th 2017, Lecture 9 TMV027/DIT321 1/20

From Regular Expressions to Finite Automata

Proposition: Every language defined by a RE is accepted by a FA.

Proof: Let L = L(R) for some RE R.

By induction on R we construct a ǫ-NFA E with only one final state and
no arcs into the initial state or out of the final state.

Moreover, E is such that L = L(E).

Base cases are the RE ∅, ǫ and a ∈ Σ.

The corresponding ǫ-NFA recognising the languages ∅, {ǫ} and {a} are:

ǫ a

April 20th 2017, Lecture 9 TMV027/DIT321 2/20

From RE to FA: Inductive Step (Cont.)

IH: Consider the RE R and S and ǫ-NFA for them.

We construct the ǫ-NFA for R + S , RS and R∗ recognising L(R)∪L(S), L(R)L(S) and
L(R)∗ respectively:

ǫ

ǫ

ǫ

ǫ

R

S

ǫ
R S

ǫ ǫ

ǫ

ǫ

R

April 20th 2017, Lecture 9 TMV027/DIT321 3/20

Example: From RE to FA

If we follow this method for the RE 0∗1 we obtain the ǫ-NFA

ǫ 0

ǫ

ǫ

ǫ ǫ 1

Compare it with the following DFA for the same language:

0

1

April 20th 2017, Lecture 9 TMV027/DIT321 4/20

How to Identify Regular Languages?

We have seen that a language is regular iff there is a DFA that accepts the
language.

Then we saw that DFA, NFA and ǫ-NFA are equivalent in the sense that
we can convert between them.

Hence FA accept all and only the regular languages (RL).

Now we have seen how to convert between FA and RE.

Thus RE also define all and only the RL.

April 20th 2017, Lecture 9 TMV027/DIT321 5/20

How to Prove that a Language is NOT Regular?

In a FA with n states, any path

q1
a1→ q2

a2→ q3
a3→ . . .

am−1→ qm
am→ qm+1

has a loop if m > n.

That is, we have i < j such that qi = qj in the path above.

This is an application of the Pigeonhole Principle.

April 20th 2017, Lecture 9 TMV027/DIT321 6/20

How to Prove that a Language is NOT Regular?

Example: Let us prove that L = {0m1m|m > 0} is not a RL.

Let us assume it is: then L = L(A) for some FA A with n states, n > 0.

Let k > n > 0 and let w = 0k1k ∈ L.

Then there must be an accepting path q0
w→ qf ∈ F .

Since k > n, there is a loop (pigeonhole principle) when reading the 0’s.

Then w = xyz with |xy | = j 6 n, y 6= ǫ and z = 0k−j1k such that

q0
x→ ql

y→ ql
z→ qf ∈ F

Observe that the following path is also an accepting path

q0
x→ ql

z→ qf ∈ F

However y must be of the form 0i with i > 0 hence xz = 0k−i1k /∈ L.

This contradicts the fact that A accepts L.
April 20th 2017, Lecture 9 TMV027/DIT321 7/20

The Pumping Lemma for Regular Languages

Theorem: Let L be a RL.
Then, there exists a constant n—which depends on L—such that for every
string w ∈ L with |w | > n, it is possible to break w into 3 strings x , y and
z such that w = xyz and

1 y 6= ǫ;

2 |xy | 6 n;

3 ∀k > 0. xykz ∈ L.

April 20th 2017, Lecture 9 TMV027/DIT321 8/20

Proof of the Pumping Lemma

Assume we have a FA A that accepts the language, then L = L(A).

Let n be the number of states in A.

Then any path of length m > n has a loop.

Let us consider w = a1a2 . . . am ∈ L.

We have an accepting path and a loop such that

q0
x→ ql

y→ ql
z→ qf ∈ F

with w = xyz ∈ L, y 6= ǫ, |xy | 6 n.

Then we also have

q0
x→ ql

yk→ ql
z→ qf ∈ F

for any k , that is, ∀k > 0. xykz ∈ L.
April 20th 2017, Lecture 9 TMV027/DIT321 9/20

Example: Application of the Pumping Lemma

We use the Pumping lemma to prove that L = {0m1m|m > 0} is not a RL.

We assume it is. Then the Pumping lemma applies.

Let n be the constant given by the lemma and let w = 0n1n ∈ L, then |w | > n.

By the lemma we know that w = xyz with y 6= ǫ, |xy | 6 n and ∀k > 0. xykz ∈ L.

Since y 6= ǫ and |xy | 6 n, we know that y = 0i with i > 1.

However, we have a contradiction since xykz /∈ L for k 6= 1 since it either has too few
0’s (k = 0) or too many (k > 1).

Note: This is connected to the fact that a FA has finite memory!
If we could build a machine with infinitely many states it would be able to
recognise the language.

April 20th 2017, Lecture 9 TMV027/DIT321 10/20

Example: Application of the Pumping Lemma

Example: Let us prove that L = {0i1j |i 6 j} is not a RL.

Let us assume it is, hence the Pumping lemma applies.

Let n be given by the Pumping lemma and let w = 0n1n+1 ∈ L, hence |w | > n.

Then we know that w = xyz with y 6= ǫ, |xy | 6 n and ∀k > 0. xykz ∈ L.

Since y 6= ǫ and |xy | 6 n, we know that y = 0r with r > 1.

However, we have a contradiction since xykz /∈ L for k > 2 since it will have more 0’s
than 1’s.

(Even for k = 2 if r > 1.)

Exercise: What about the languages {0i1j | i > j}, {0i1j | i > j} and {0i1j | i 6= j}?

April 20th 2017, Lecture 9 TMV027/DIT321 11/20

Pumping Lemma is not a Sufficient Condition

By showing that the Pumping lemma does not apply to a certain language
L we prove that L is not regular.

However, if the Pumping lemma does apply to L, we cannot conclude
whether L is regular or not!

Example: We know L = {bmcm | m > 0} is not regular.

Let us consider L′ = a+L ∪ (b + c)∗.

Using clousure properties (to come later) we can prove that L′ is not regular.

However, the Pumping lemma does apply for L′ with n = 1.

This shows the Pumping lemma is not a sufficient condition for a language to be

regular.

April 20th 2017, Lecture 9 TMV027/DIT321 12/20

Closure Properties for Regular Languages

Let M and N be RL. Then M = L(R) = L(D) and N = L(S) = L(F)
for RE R and S , and DFA D and F .

We have seen that RL are closed under the following operations:

Union: M∪N = L(R + S) or M∪N = L(D ⊎ F) (s.21, l.5);

Complement: M = L(D) (slide 23, lec. 5)

Intersection: M∩N = M∪N or M∩N = L(D × F) (s.20, l.5);

Difference: M−N = M∩N ;

Concatenation: MN = L(RS);
Closure: M∗ = L(R∗).

April 20th 2017, Lecture 9 TMV027/DIT321 13/20

More Closure Properties for Regular Languages

RL are also closed under the following operations:

Prefix:
See additional exercise 3 on DFA.
Hint: in D, make final all states in a path from the
start state to final state.

Reversal:
Recall that rev(a1 . . . an) = an . . . a1 and
∀x .rev(rev(x)) = x (slides 14 & 16, lec. 4).

April 20th 2017, Lecture 9 TMV027/DIT321 14/20

Closure under Prefix

Another way to prove that the language of prefixes of a RL is regular:

Define the function:

pre : RE → RE
pre(∅) = ∅
pre(ǫ) = ǫ
pre(a) = ǫ+ a
pre(R1 + R2) = pre(R1) + pre(R2)
pre(R1R2) = pre(R1) + R1pre(R2)
pre(R∗) = R∗pre(R)

and prove that L(pre(R)) = Prefix(L(R)).

Then, if L = L(R) for some RE R then Prefix(L) = Prefix(L(R)) = L(pre(R)).
April 20th 2017, Lecture 9 TMV027/DIT321 15/20

Closure under Reversal

We define the function:

r : RE → RE
∅r = ∅ (R1 + R2)

r = R r
1 + R r

2

ǫr = ǫ (R1R2)
r = R r

2R
r
1

ar = a (R∗)r = (R r)∗

Theorem: If L is regular so is Lr.

Proof: (See theo. 4.11, pages 139–140).

Let R be a RE such that L = L(R).
We need to prove by induction on R that L(R r) = (L(R))r.
Hence Lr = (L(R))r = L(R r) and Lr is regular.

Example: The reverse of the language defined by (0 + 1)∗0 can be defined by 0(0 + 1)∗.

April 20th 2017, Lecture 9 TMV027/DIT321 16/20

Closure under Reversal

Another way to prove this result is by constructing a ǫ-NFA for Lr.

Proof: Let N = (Q,Σ, δN , q0,F) be a NFA such that L = L(N).

Define a ǫ-NFA E = (Q ∪ {q},Σ, δE , q, {q0}) with q /∈ Q and δE such that

r ∈ δE (s, a) iff s ∈ δN(r , a) for r , s ∈ Q
r ∈ δE (q, ǫ) iff r ∈ F

April 20th 2017, Lecture 9 TMV027/DIT321 17/20

Using Closure Properties

Example: Consider L1 and L2 such that L1 is regular, L2 is not regular
but L1 ∩ L2 is regular.

Is L1 ∪ L2 is regular?

Let us assume that L1 ∪ L2 is regular.

Then (L1 ∪ L2 − L1) ∪ (L1 ∩ L2) should also be regular.

But this is actually L2 which is not regular!

We arrive to a contradiction.

Hence L1 ∪ L2 cannot be regular.

April 20th 2017, Lecture 9 TMV027/DIT321 18/20

Overview of next Week

Mon 24 Tue 25 Wed 26 Thu 27 Fri 28

Ex 10-12 EA
RL.

Ex 10-12 HA2
RL.

Lec 13-15 HB3
RL.

Lec 13-15 HB3
CFG.

15-17 6213 6215
Individual help

15-17 EL41
Consultation

April 20th 2017, Lecture 9 TMV027/DIT321 19/20

Overview of Next Lecture

Sections 4.3–4.4:

Decision properties for RL;

Equivalence of RL;

Minimisation of automata.

April 20th 2017, Lecture 9 TMV027/DIT321 20/20

