Finite Automata Theory and Formal Languages TMV027/DIT321– LP4 2017

Lecture 8 Ana Bove

April 6th 2017

Overview of today's lecture:

- Regular expressions;
- Algebraic laws for regular expressions;
- Equivalence between FA and RE: from FA to RE.

Recap: Non-deterministic Finite Automata (with ϵ -Transitions)

- Product of NFA as for DFA, accepting intersection of languages;
- Union of languages comes naturally, complement not so "immediate";
- By allowing ϵ -transitions we obtain ϵ -NFA:
 - Defined by a 5-tuple $(Q, \Sigma, \delta, q_0, F)$;
 - $\delta: Q \times (\Sigma \cup {\epsilon}) \rightarrow \mathcal{P}ow(Q);$
 - ECLOSE needed for $\hat{\delta}$;
 - Accept set of words x such that $\hat{\delta}(q_0, x) \cap F \neq \emptyset$;
 - Given a ϵ -NFA E we can convert it to a DFA D such that $\mathcal{L}(E) = \mathcal{L}(D)$;
 - Hence, also accept the so called regular language.

Regular Expressions

Regular expressions (RE) are an *algebraic* way to denote languages.

RE are a simple way to express the strings in a language.

Example: grep command in UNIX (K. Thompson) takes a (variation) of a RE as input.

We will show that RE are as expressive as DFA and hence, they define all and only the *regular languages*.

April 6th 2017, Lecture 8

MV027/DIT321

Inductive Definition of Regular Expressions

Definition: Given an alphabet Σ , we inductively define the *regular expressions* over Σ as follows:

Base cases: • The constants \emptyset and ϵ are RE; • If $a \in \Sigma$ then a is a RE.

Inductive steps: Given the RE R and S, we define the following RE: • R + S and RS are RE; • R^* is RE.

The precedence of the operands is the following:

- The closure operator * has the highest precedence;
- Next comes concatenation;
- Finally, comes the operator +;
- We use parentheses (,) to change the precedence.

(Compare with exponentiation, multiplication and addition on numbers.)

Another Way to Define the Regular Expressions

A nicer way to define the regular expressions is by giving the following BNF (Backus-Naur Form), for $a \in \Sigma$:

 $R ::= \emptyset \mid \epsilon \mid a \mid R + R \mid RR \mid R^*$

alternatively

$$R, S ::= \emptyset \mid \epsilon \mid a \mid R + S \mid RS \mid R^*$$

Note: BNF is a way to declare the syntax of a language.

It is very useful when describing *context-free grammars* and in particular the syntax of (big parts of) most programming languages.

April 6th 2017, Lecture 8

TMV027/DIT32

Functional Representation of Regular Expressions

```
data RExp a = Empty | Epsilon | Atom a |
        Plus (RExp a) (RExp a) |
        Concat (RExp a) (RExp a) |
        Star (RExp a)
```

For example the expression $b + (bc)^*$ is given as

Plus (Atom "b") (Star (Concat (Atom "b") (Atom "c")))

Language Defined by the Regular Expressions

Definition: Given a RE R, the *language* $\mathcal{L}(R)$ generated/defined by it is defined by recursion on the expression:

Base cases: •	$\mathcal{L}(\emptyset) = \emptyset;$
٩	$\mathcal{L}(\epsilon) = \{\epsilon\};$
٩	Given $a \in \Sigma$, $\mathcal{L}(a) = \{a\}$.
Recursive cases:	• $\mathcal{L}(R+S) = \mathcal{L}(R) \cup \mathcal{L}(S);$
	$\mathcal{L}(RS) = \mathcal{L}(R)\mathcal{L}(S);$
٩	$\mathcal{L}(R^*) = \mathcal{L}(R)^*.$

Note: $x \in \mathcal{L}(R)$ iff x is generated by R.

Notation: We write $x \in \mathcal{L}(R)$ or $x \in R$ indistinctly.

April 6th 2017, Lecture 8

TMV027/DIT32

6/32

Example of Regular Expressions

Let
$$\Sigma = \{0, 1\}$$
:
• $0^* + 1^* = \{\epsilon, 0, 00, 000, \ldots\} \cup \{\epsilon, 1, 11, 111, \ldots\}$
• $(0+1)^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, \ldots\}$
• $(01)^* = \{\epsilon, 01, 0101, 010101, \ldots\}$
• $(000)^* = \{\epsilon, 000, 000000, 000000000, \ldots\}$
• $01^* + 1 = \{0, 01, 011, 0111, \ldots\} \cup \{1\}$
• $((0(1^*)) + 1) = \{0, 01, 011, 0111, \ldots\} \cup \{1\}$
• $(01)^* + 1 = \{\epsilon, 01, 0101, 010101, \ldots\} \cup \{1\}$
• $(\epsilon + 1)(01)^*(\epsilon + 0) = (01)^* + 1(01)^* + (01)^*0 + 1(01)^*0$
• $(01)^* + 1(01)^* + (01)^*0 + 1(01)^*0 = \ldots$

What do they mean? Are there expressions that are equivalent?

Algebraic Laws for Regular Expressions

The following equalities hold for any RE R, S and T:

Note: Compare (some of) these laws with those for sets on slide 14 lecture 2.

April 6th 2017, Lecture 8

TMV027/DIT321

Algebraic Laws for Regular Expressions

Other useful laws to simplify regular expressions are:

- Shifting rule: $R(SR)^* = (RS)^*R$
- **Denesting rule**: $(R^*S)^*R^* = (R+S)^*$

Note: By the shifting rule we also get $R^*(SR^*)^* = (R+S)^*$

• Variation of the denesting rule: $(R^*S)^* = \epsilon + (R+S)^*S$

Note: These rules are not always trivial to apply ... :-)

Example: Proving Equalities Using the Algebraic Laws

Example: The set of all words with no substring of more than two adjacent 0's is $(1 + 01 + 001)^*(\epsilon + 0 + 00)$. Now,

$$egin{aligned} &(1+01+001)^*(\epsilon+0+00)\ &=((\epsilon+0)(\epsilon+0)1)^*(\epsilon+0)(\epsilon+0)\ &=(\epsilon+0)(\epsilon+0)(1(\epsilon+0)(\epsilon+0))^*\ & ext{ by shifting}\ &=(\epsilon+0+00)(1+10+100)^*\ & ext{ by distributivity} \end{aligned}$$

Then $(1+01+001)^*(\epsilon+0+00) = (\epsilon+0+00)(1+10+100)^*$

Example: A proof that $a^*b(c + da^*b)^* = (a + bc^*d)^*bc^*$:

$a^*b(c+da^*b)^*=a^*b(c^*da^*b)^*c^*$				
$a^*b(c^*da^*b)^*c^* = (a^*bc^*d)^*a^*bc^*$				
$(a^*bc^*d)^*a^*bc^* = (a+bc^*d)^*bc^*$				

by denesting $(R = c, S = da^*b)$
by shifting $(R = a^*b, S = c^*d)$
by denesting $(R = a, S = bc^*d)$

April 6th 2017, Lecture 8

TMV027/DIT321

10/32

Equality of Regular Expressions

Recall: RE are a way to denote languages.

Then, for RE R and S, R = S actually means $\mathcal{L}(R) = \mathcal{L}(S)$.

Hence we can prove the equality of RE in the same way we prove the equality of languages!

Example: Let us show that $R^* = R^*R^*$. Let $\mathcal{L} = \mathcal{L}(R)$.

Then $\mathcal{L}(R^*) = \mathcal{L}(R)^* = \mathcal{L}^*$.

 $\mathcal{L}^* \subseteq \mathcal{L}^* \mathcal{L}^*$ since $\epsilon \in \mathcal{L}^*$.

Conversely, if $\mathcal{L}^*\mathcal{L}^* \subseteq \mathcal{L}^*$ then $x = x_1x_2$ with $x_1 \in \mathcal{L}^*$ and $x_2 \in \mathcal{L}^*$.

If $x_1 = \epsilon$ or $x_2 = \epsilon$ then it is clear that $x \in \mathcal{L}^*$.

Otherwise $x_1 = u_1 u_2 \dots u_n$ with $u_i \in \mathcal{L}$ and $x_2 = v_1 v_2 \dots v_m$ with $v_j \in \mathcal{L}$.

Then $x = x_1 x_2 = u_1 u_2 \dots u_n v_1 v_2 \dots v_m$ is in \mathcal{L}^* . April 6th 2017, Lecture 8

Proving Algebraic Laws for Regular Expressions

In general, given the RE R and S we can prove the law R = S as follows:

Convert R and S into concrete RE C and D, respectively, by replacing each variable in the RE R and S by (different) concrete symbols.

Example: $R(SR)^* = (RS)^*R$ can be converted into $a(ba)^* = (ab)^*a$.

Prove or disprove whether $\mathcal{L}(C) = \mathcal{L}(D)$. If $\mathcal{L}(C) = \mathcal{L}(D)$ then R = S is a true law, otherwise it is not.

Example: We can prove the shifting law by induction: $\forall n \in \mathbb{N}.a(ba)^n = (ab)^n a$.

Theorem: The above procedure correctly identifies the true laws for RE.

Proof: See theorems 3.14 and 3.13 in pages 121 and 120 respectively.

April 6th 2017, Lecture 8

TMV027/DIT321

Example: Proving the Denesting Rule

We can state $(R^*S)^*R^* = (R+S)^*$ by proving $\mathcal{L}((a^*b)^*a^*) = \mathcal{L}((a+b)^*)$:

 \subseteq : Let $x \in (a^*b)^*a^*$, then x = vw with $v \in (a^*b)^*$ and $w \in a^*$.

By induction on v. If $v = \epsilon$ we are done.

Otherwise v = av' or v = bv'. In both cases $v' \in (a^*b)^*$ hence by IH $v'w \in (a+b)^*$ and so is vw.

 \supseteq : Let $x \in (a+b)^*$.

By induction on x. If $x = \epsilon$ then we are done.

Otherwise x = x'a or x = x'b and $x' \in (a + b)^*$.

By IH $x' \in (a^*b)^*a^*$ and then x' = vw with $v \in (a^*b)^*$ and $w \in a^*$.

If $x'a = v(wa) \in (a^*b)^*a^*$ since $v \in (a^*b)^*$ and $(wa) \in a^*$. If $x'b = (v(wb))\epsilon \in (a^*b)^*a^*$ since $v(wb) \in (a^*b)^*$ and $\epsilon \in a^*$.

April 6th 2017, Lecture 8

Regular Languages and Regular Expressions

Theorem: If \mathcal{L} is a regular language then there exists a RE R such that $\mathcal{L} = \mathcal{L}(R)$.

Proof: Recall that each regular language has a FA that recognises it.

We shall construct a RE from such automaton.

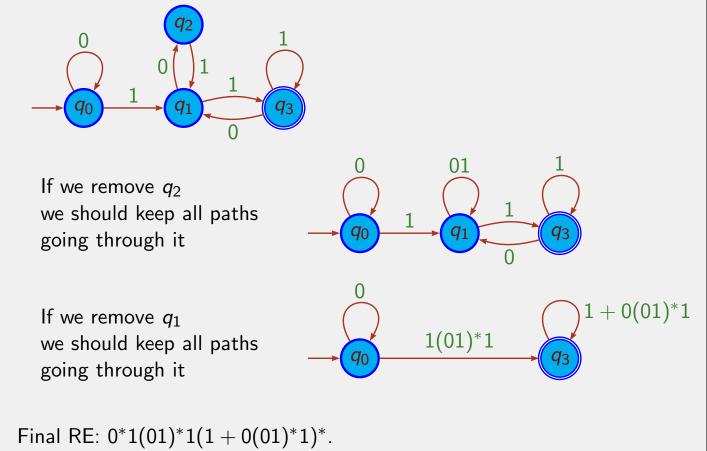
We shall see 2 ways of constructing a RE from a FA:

- Eliminating states (section 3.2.2);
- By solving a *linear equation system* using Arden's Lemma.
 (OBS: not in the book!)

April 6th 2017, Lecture 8

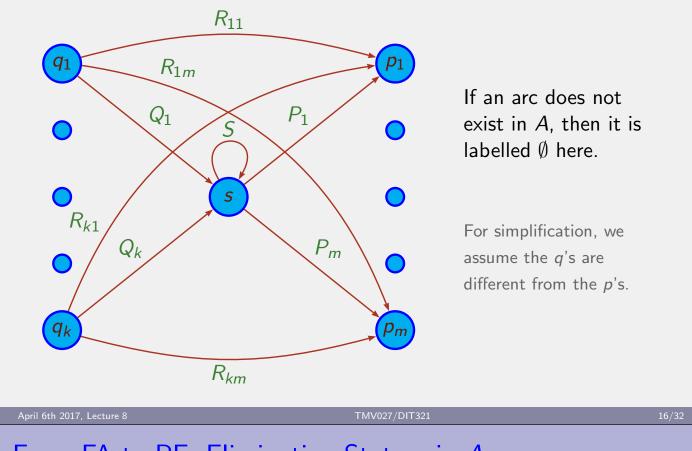
TMV027/DIT321

14/32



From FA to RE: Eliminating States in an Automaton A

Let the FA *A* be:

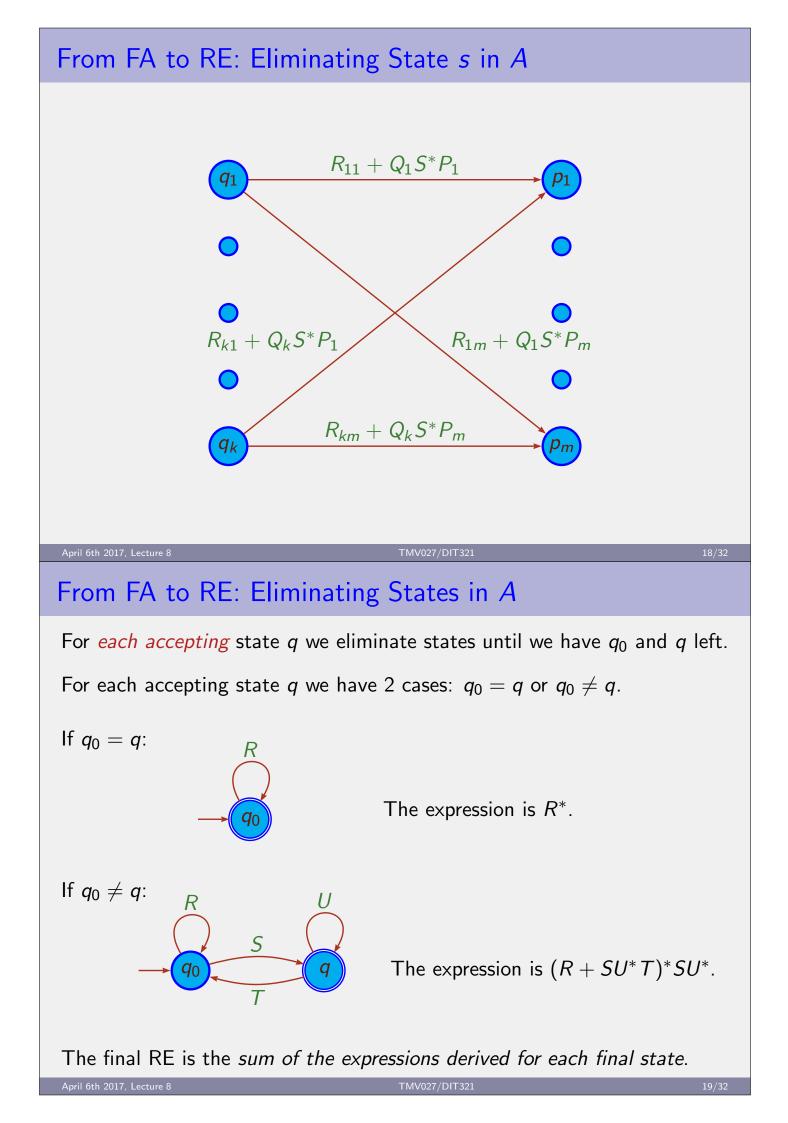


From FA to RE: Eliminating State s in A

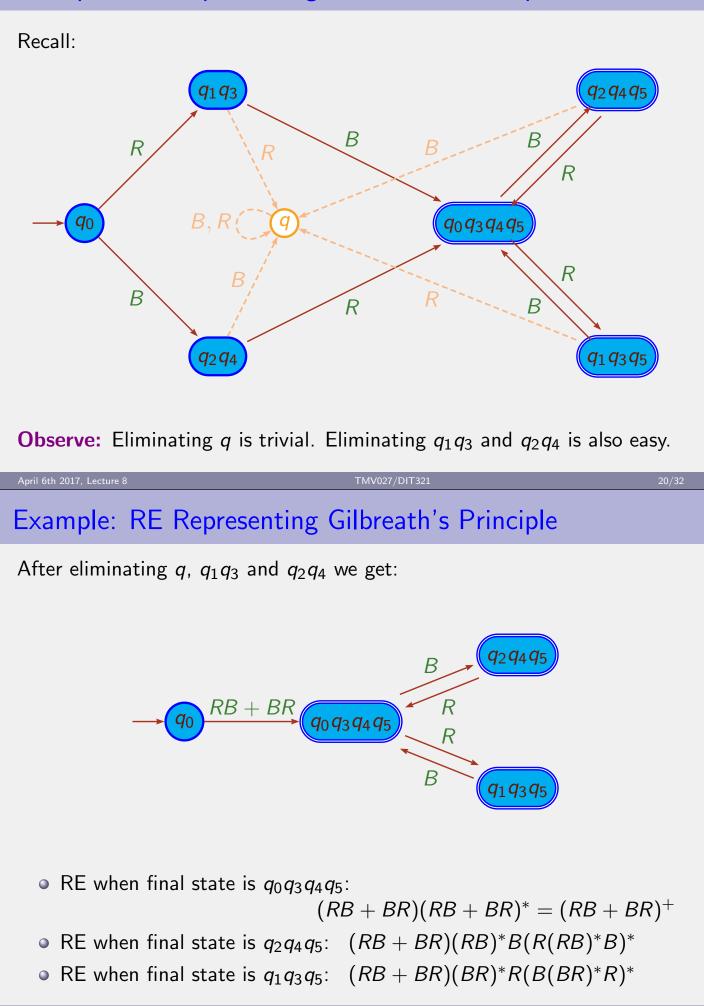
When we eliminate the state s, all the paths that went through s do not longer exists!

To preserve the language of the automaton we must include, on an arc that goes directly from q to p, the labels of the paths that went from q to p passing through s.

Labels now are not just symbols but (possible an infinite number of) strings: hence we will use RE as labels.



Example: RE Representing Gilbreath's Principle



Example: RE Representing Gilbreath's Principle

The final RE is the sum of the 3 previous expressions.

Let us first do some simplifications.

 $(RB + BR)(RB)^*B(R(RB)^*B)^* = (RB + BR)(RB)^*(BR(RB)^*)^*B$ by shifting = $(RB + BR)(RB + BR)^*B$ by the shifted-denesting rule = $(RB + BR)^+B$

Similarly $(RB + BR)(BR)^*R(B(BR)^*R)^* = (RB + BR)^+R$.

Hence the final RE is

$$(RB + BR)^+ + (RB + BR)^+B + (RB + BR)^+R$$

which is equivalent to

$$(RB+BR)^+(\epsilon+B+R)$$

April 6th 2017, Lecture 8

TMV027/DIT321

22/32

From FA to RE: Linear Equation System

To any FA we associate a system of equations with REs as solution.

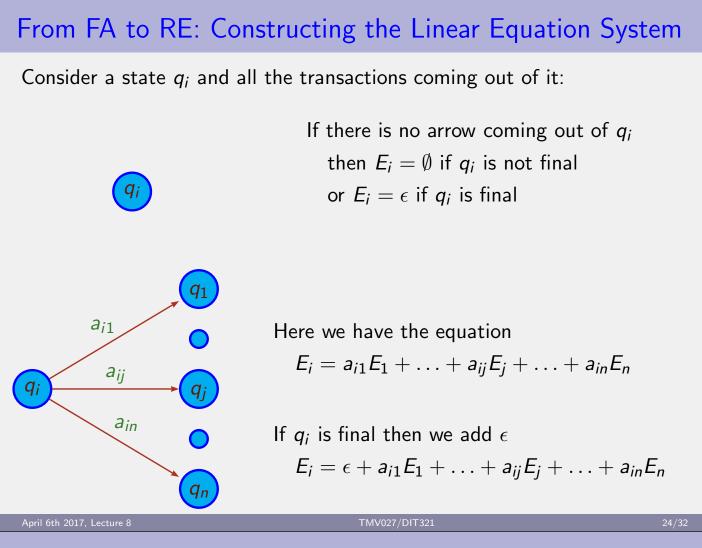
To every state q_i we associate a variable E_i .

Each E_i represents the set $\{x \in \Sigma^* \mid \hat{\delta}(q_i, x) \in F\}$ (for DFA).

Then E_0 represents the set of words accepted by the FA.

The solution to the linear system of equations associates a RE to each variable E_i .

The solution for E_0 is the RE generating the same language that is accepted by the FA.



From FA to RE: Solving the Linear Equation System

Lemma: (Arden) A solution to X = RX + S is $X = R^*S$. Furthermore, if $\epsilon \notin \mathcal{L}(R)$ then this is the only solution to the equation X = RX + S.

Proof: (sketch) We have that $R^* = RR^* + \epsilon$.

Hence $R^*S = RR^*S + S$ and then $X = R^*S$ is a solution to X = RX + S.

One should also prove that:

- Any solution to X = RX + S contains at least R^*S ;
- If e ∉ L(R) then R*S is the only solution to the equation X = RX + S (that is, no solution is "bigger" than R*S).

See for example Theorem 6.1, pages 185–186 of *Theory of Finite Automata, with an introduction to formal languages* by John Carroll and Darrell Long, Prentice-Hall International Editions.

Example: RE Representing Automaton in Slide 15

$$\begin{split} E_0 &= 0E_0 + 1E_1 \quad E_1 = 0E_2 + 1E_3 \\ E_2 &= 0E_x + 1E_1 \quad E_3 = 0E_1 + 1E_3 + \epsilon \quad E_x = (0+1)E_x \end{split}$$

We solve E_x : $E_x = (0+1)^* \emptyset = \emptyset$
We eliminate E_x and E_2 : $\begin{aligned} E_0 &= 0E_0 + 1E_1 & E_1 = 01E_1 + 1E_3 \\ E_3 &= 0E_1 + 1E_3 + \epsilon \end{aligned}$
We solve E_1 : $E_1 = (01)^* 1E_3$
We eliminate E_1 : $E_0 = 0E_0 + 1(01)^* 1E_3 \quad E_3 = 0(01)^* 1E_3 + 1E_3 + \epsilon$
We solve E_3 : $E_3 = (0(01)^* 1 + 1)E_3 + \epsilon \Rightarrow E_3 = (0(01)^* 1 + 1)^* \epsilon = (0(01)^* 1 + 1)^* \epsilon$
We eliminate E_3 : $E_0 = 0E_0 + 1(01)^* 1(0(01)^* 1 + 1)^*$
We solve E_0 : $E_0 = 0^* 1(01)^* 1(0(01)^* 1 + 1)^*$

Example: RE Representing Gilbreath's Principle

We obtain the following system of equations (see slide 20):

$E_0 = RE_{13} + BE_{24}$	$E_{0345} = \epsilon + BE_{245} + RE_{135}$
$E_{13} = BE_{0345} + RE_q$	$E_{245} = \epsilon + RE_{0345} + BE_q$
$E_{24} = RE_{0345} + BE_q$	$E_{135} = \epsilon + BE_{0345} + RE_q$
	$E_q = (B+R)E_q$

Since $E_q = (B + R)^* \emptyset = \emptyset$, this can be simplified to:

$E_0 = RE_{13} + BE_{24}$	$E_{0345} = \epsilon + BE_{245} + RE_{135}$
$E_{13} = BE_{0345}$	$E_{245} = \epsilon + RE_{0345}$
$E_{24} = RE_{0345}$	$E_{135} = \epsilon + BE_{0345}$

Example: RE Representing Gilbreath's Principle

And further to:

$$E_0 = (RB + BR)E_{0345}$$

 $E_{0345} = (RB + BR)E_{0345} + \epsilon + B + R$

Then a solution to E_{0345} is

$$(RB + BR)^*(\epsilon + B + R)$$

and the RE which is the solution to the problem is

$$(RB + BR)(RB + BR)^*(\epsilon + B + R)$$

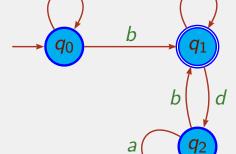
or

$$(RB+BR)^+(\epsilon+B+R)$$

April 6th 2017, Lecture 8

Example: Eliminating States

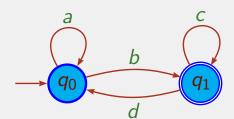
Consider the automaton D



By eliminating states the expression is

$$a^*b(c+da^*b)^*$$

Consider the automaton D'



By eliminating states the expression is

$$(a + bc^*d)^*bc^*$$

But intuitively these automata are equivalent...

Example: Linear Equation System

The linear equations corresponding to the automaton D' are

$$E_0 = aE_0 + bE_1 \qquad \qquad E_1 = \epsilon + cE_1 + dE_0$$

The resulting RE depends on the order we solve the system.

If we solve E_1 first we get $E_0 = (a + bc^*d)^*bc^*$.

If we solve E_0 first we get $E_0 = a^*b(c + da^*b)^*$.

It should be that $a^*b(c + da^*b)^* = (a + bc^*d)^*bc^*!$ (see proof in slide 10.)

Exercise: What RE do we obtain for the automaton D?

April 6th 2017, Lecture 8

MV027/DIT321

Overview of next Week

Mon 17	Tue 18	Wed 19	Thu 20	Fri 21
			Ex 10-12 EA <i>ϵ</i> -NFA, RE.	
			Lec 13-15 HB3 RE \rightarrow FA, RL.	
		Ex 15-17 EA <i>ϵ</i> -NFA, RE.		

Overview of Next Lecture

Sections 3.2.3, 4-4.2.1:

- Equivalence between FA and RE: from RE to FA;
- Pumping Lemma for RL;
- Closure properties of RL.

April 6th 2017, Lecture 8

TMV027/DIT321

32/32