Finite Automata Theory and Formal Languages TMV027/DIT321- LP4 2017

Lecture 7
Ana Bove

April 3rd 2017

Overview of today's lecture:

- More on NFA;
- NFA with ϵ-Transitions;
- Equivalence between DFA and ϵ-NFA;

Recap: Non-deterministic Finite Automata

- Defined by a 5 -tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$;
- Why "non-deterministic"?;
- $\delta: Q \times \Sigma \rightarrow \mathcal{P o w}(Q)$;
- Easier to define for some problems;
- Accept set of words x such that $\hat{\delta}\left(q_{0}, x\right) \cap F \neq \emptyset$;
- Given a NFA N we apply the subset construction to get a DFA $D \ldots$
- ... such that $\mathcal{L}(N)=\mathcal{L}(D)$;
- Hence, NFA also accept the so called regular language.

A Bad Case for the Subset Construction

Proposition: Any DFA recognising the same language as the NFA below has at least 2^{n} states:

This NFA recognises strings over $\{0,1\}$ such that the nth symbol from the end is a 1 .

Proof: Let $\mathcal{L}_{n}=\left\{x 1 u \mid x \in \Sigma^{*}, u \in \Sigma^{n-1}\right\}$ and $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$ a DFA.
We want to show that if $|Q|<2^{n}$ then $\mathcal{L}(D) \neq \mathcal{L}_{n}$.

A Bad Case for the Subset Construction (Cont.)

Lemma: If $\Sigma=\{0,1\}$ and $|Q|<2^{n}$ then there exist $x, y \in \Sigma^{*}$ and $u, v \in \Sigma^{n-1}$ such that $\hat{\delta}\left(q_{0}, x 0 u\right)=\hat{\delta}\left(q_{0}, y 1 v\right)$.

Proof: Let us define a function $h: \Sigma^{n} \rightarrow Q$ such that $h(z)=\hat{\delta}\left(q_{0}, z\right)$.
h cannot be injective because $|Q|<2^{n}=\left|\Sigma^{n}\right|$.
So h sends 2 different words to the same image: $a_{1} \ldots a_{n} \neq b_{1} \ldots b_{n}$ but

$$
h\left(a_{1} \ldots a_{n}\right)=\hat{\delta}\left(q_{0}, a_{1} \ldots a_{n}\right)=\hat{\delta}\left(q_{0}, b_{1} \ldots b_{n}\right)=h\left(b_{1} \ldots b_{n}\right)
$$

Let us assume that $a_{i}=0$ and $b_{i}=1$.
Let $x=a_{1} \ldots a_{i-1}, y=b_{1} \ldots b_{i-1}, u=a_{i+1} \ldots a_{n} 0^{i-1}, v=b_{i+1} \ldots b_{n} 0^{i-1}$.
Hence (recall that for a DFA, $\hat{\delta}(q, z w)=\hat{\delta}(\hat{\delta}(q, z), w))$:

$$
\begin{aligned}
& \hat{\delta}\left(q_{0}, x 0 u\right)=\hat{\delta}\left(q_{0}, a_{1} \ldots a_{n} 0^{i-1}\right)=\hat{\delta}\left(\hat{\delta}\left(q_{0}, a_{1} \ldots a_{n}\right), 0^{i-1}\right)= \\
& \hat{\delta}\left(\hat{\delta}\left(q_{0}, b_{1} \ldots b_{n}\right), 0^{i-1}\right)=\hat{\delta}\left(q_{0}, b_{1} \ldots b_{n} 0^{i-1}\right)=\hat{\delta}\left(q_{0}, y 1 v\right)
\end{aligned}
$$

A Bad Case for the Subset Construction (Cont.)

Lemma: If $|Q|<2^{n}$ then $\mathcal{L}(D) \neq \mathcal{L}_{n}$.

Proof: Assume $\mathcal{L}(D)=\mathcal{L}_{n}$.
Let $x, y \in \Sigma^{*}$ and $u, v \in \Sigma^{n-1}$ as in previous lemma.
Then, $y 1 v \in \mathcal{L}(D)$ but $\times 0 u \notin \mathcal{L}(D)$,
That is, $\hat{\delta}\left(q_{0}, y 1 v\right) \in F$ but $\hat{\delta}\left(q_{0}, x 0 u\right) \notin F$.
However, this contradicts the previous lemma that says that $\hat{\delta}\left(q_{0}, x 0 u\right)=\hat{\delta}\left(q_{0}, y 1 v\right)$.

Product Construction for NFA

Definition: Given 2 NFA $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and $N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ over the same alphabet Σ, we define the product $N_{1} \times N_{2}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ as follows:

- $Q=Q_{1} \times Q_{2}$;
- $\delta\left(\left(p_{1}, p_{2}\right), a\right)=\delta_{1}\left(p_{1}, a\right) \times \delta_{2}\left(p_{2}, a\right)$;
- $q_{0}=\left(q_{1}, q_{2}\right)$;
- $F=F_{1} \times F_{2}$.

Lemma: $\left(t_{1}, t_{2}\right) \in \hat{\delta}\left(\left(p_{1}, p_{2}\right), x\right)$ iff $t_{1} \in \hat{\delta}_{1}\left(p_{1}, x\right)$ and $t_{2} \in \hat{\delta}_{2}\left(p_{2}, x\right)$.
Proof: By induction on x.

Proposition: $\mathcal{L}\left(N_{1} \times N_{2}\right)=\mathcal{L}\left(N_{1}\right) \cap \mathcal{L}\left(N_{2}\right)$.

Variation of Product Construction for NFA?

Recall: Given 2 DFA D_{1} and D_{2}, then $\mathcal{L}\left(D_{1} \uplus D_{2}\right)=\mathcal{L}\left(D_{1}\right) \cup \mathcal{L}\left(D_{2}\right)$.

Given 2 NFA N_{1} and N_{2}, do we need to define $N_{1} \uplus N_{2}$?
Not really since union of languages can be modelled by the nondeterminism!

Complement of a NFA?

OBS: Given NFA $N=(Q, \Sigma, \delta, q, F)$ and $N^{\prime}=(Q, \Sigma, \delta, q, Q-F)$, in general we do not have that $\mathcal{L}\left(N^{\prime}\right)=\Sigma^{*}-\mathcal{L}(N)$.

Example: Let $\Sigma=\{a\}$ and N and N^{\prime} as follows:

$$
\mathcal{L}(N)=\{a\}
$$

$$
\mathcal{L}\left(N^{\prime}\right)=\{\epsilon\} \neq \Sigma^{*}-\{a\}
$$

NFA with ϵ-Transitions

We could allow ϵ-transitions: transitions from one state to another without reading any input symbol.

Example: The following ϵ-NFA searches for the keyword web and ebay:

ϵ-NFA Accepting Words of Length Divisible by 3 or by 5

Example: Let $\Sigma=\{1\}$.

NFA with ϵ-Transitions

Definition: A NFA with ϵ-transitions (ϵ-NFA) is a 5 -tuple ($Q, \Sigma, \delta, q_{0}, F$) consisting of:

- A finite set Q of states;
- A finite set \sum of symbols (alphabet);
- A "partial" transition function $\delta: Q \times(\Sigma \cup\{\epsilon\}) \rightarrow \mathcal{P o w}(Q)$;
- A start state $q_{0} \in Q$;

O A set $F \subseteq Q$ of final or accepting states.

Exercise: ϵ-NFA Accepting Decimal Numbers

Define a NFA accepting number with an optional $+/-$ symbol and an optional decimal part.

The ϵ-transitions take care of the optional symbol $+/-$ and the optional decimal part.

ϵ-Closures

Informally, the ϵ-closure of a state q is the set of states we can reach by doing nothing or by only following paths labelled with ϵ.

Example: For the automaton

the ϵ-closure of q_{0} is $\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}$.

ϵ-Closures

Definition: Formally, we define the ϵ-closure of a set of states as follows:

- If $q \in S$ then $q \in \operatorname{ECLOSE}(S)$;
- If $q \in \operatorname{ECLOSE}(S)$ and $p \in \delta(q, \epsilon)$ then $p \in \operatorname{ECLOSE}(S)$.

Note: Alternative formulation

$$
\frac{q \in S}{q \in \operatorname{ECLOSE}(S)}
$$

$$
\frac{q \in \operatorname{ECLOSE}(S) \quad p \in \delta(q, \epsilon)}{p \in \operatorname{ECLOSE}(S)}
$$

Definition: We say that S is ϵ-closed iff $S=\operatorname{ECLOSE}(S)$.

Remarks: ϵ-Closures

- Intuitively, $p \in \operatorname{ECLOSE}(S)$ iff there exists $q \in S$ and a sequence of ϵ-transitions such that

- The ϵ-closure of a single state q can be computed as $\operatorname{ECLOSE}(\{q\})$;
- $\operatorname{ECLOSE}(\emptyset)=\emptyset$;
- S is ϵ-closed iff $q \in S$ and $p \in \delta(q, \epsilon)$ implies $p \in S$.

Exercise: Implement the ϵ-closure!

Extending the Transition Function to Strings

Definition: Given an ϵ-NFA $E=\left(Q, \Sigma, \delta, q_{0}, F\right)$ we define

$$
\begin{aligned}
& \hat{\delta}: Q \times \Sigma^{*} \rightarrow \operatorname{Pow}(Q) \\
& \hat{\delta}(q, \epsilon)=\operatorname{ECLOSE}(\{q\}) \\
& \hat{\delta}(q, a x)=\bigcup_{p \in \Delta(\operatorname{ECLOSE}(\{q\}), a)} \hat{\delta}(p, x) \\
& \quad \text { where } \Delta(S, a)=\cup_{p \in S} \delta(p, a)
\end{aligned}
$$

Remark: By definition, $\hat{\delta}(q, a)=\operatorname{ECLOSE}(\Delta(\operatorname{ECLOSE}(\{q\}), a))$.

Language Accepted by a ϵ-NFA

Definition: The language accepted by the ϵ-NFA $\left(Q, \Sigma, \delta, q_{0}, F\right)$ is the set $\mathcal{L}=\left\{x \in \Sigma^{*} \mid \hat{\delta}\left(q_{0}, x\right) \cap F \neq \emptyset\right\}$.

Example: Let $\Sigma=\{b\}$.

The automaton accepts the language $\{b, b b, b b b\}$.

Note: Yet again, we could write a program that simulates a ϵ-NFA and let the program tell us whether a certain string is accepted or not.

Exercise: Do it!
April 3rd 2017, Lecture 7

Example: Eliminating ϵ-Transitions

Let us eliminate the ϵ-transitions in ϵ-NFA that recognises numbers in slide 11 .

We obtain the following DFA:

Eliminating ϵ-Transitions

Definition: Given an ϵ-NFA $E=\left(Q_{E}, \Sigma, \delta_{E}, q_{E}, F_{E}\right)$ we define a DFA $D=\left(Q_{D}, \Sigma, \delta_{D}, q_{D}, F_{D}\right)$ as follows:

- $Q_{D}=\left\{\operatorname{ECLOSE}(S) \mid S \in \mathcal{P o w}\left(Q_{E}\right)\right\} ;$
- $\delta_{D}(S, a)=\operatorname{ECLOSE}(\Delta(S, a))$ with $\Delta(S, a)=\cup_{p \in S} \delta(p, a)$;
- $q_{D}=\operatorname{ECLOSE}\left(\left\{q_{E}\right\}\right)$;
- $F_{D}=\left\{S \in Q_{D} \mid S \cap F_{E} \neq \emptyset\right\}$.

Note: This construction is similar to the subset construction but now we need to ϵ-close after each step.

Exercise: Implement this transformation!

Eliminating ϵ-Transitions

Let E be an ϵ-NFA and D the corresponding DFA after eliminating ϵ-transitions.

Lemma: $\forall x \in \Sigma^{*} . \hat{\delta}_{E}\left(q_{E}, x\right)=\hat{\delta}_{D}\left(q_{D}, x\right)$.
Proof: By induction on x.

Proposition: $\mathcal{L}(E)=\mathcal{L}(D)$.
Proof: $x \in \mathcal{L}(E)$ iff $\hat{\delta}_{E}\left(q_{E}, x\right) \cap F_{E} \neq \emptyset$
iff $\hat{\delta}_{E}\left(q_{E}, x\right) \in F_{D} \quad$ by definition of F_{D}
iff $\hat{\delta}_{D}\left(q_{D}, x\right) \in F_{D}$ by previous lemma
iff $x \in \mathcal{L}(D)$.

Finite Automata and Regular Languages

We have shown that DFA, NFA and ϵ-NFA are equivalent in the sense that we can transform one to the other.

Hence, a language is regular iff there exists a finite automaton (DFA, NFA or ϵ-NFA) that accepts the language.

Learning Outcome of the Course (revisited)

After completion of this course, the student should be able to:

- Explain and manipulate the different concepts in automata theory and formal languages;
- Have a clear understanding about the equivalence between (non-)deterministic finite automata and regular expressions;
- Understand the power and the limitations of regular languages and context-free languages;
- Prove properties of languages, grammars and automata with rigorously formal mathematical methods;
- Design automata, regular expressions and context-free grammars accepting or generating a certain language;
- Describe the language accepted by an automata or generated by a regular expression or a context-free grammar;
- Simplify automata and context-free grammars;
- Determine if a certain word belongs to a language;
- Define Turing machines performing simple tasks;
- Differentiate and manipulate formal descriptions of languages, automata and grammars.

Overview of Next Lecture

Sections 3.1, 3.4, 3.2.2:

- Regular expressions.
- Algebraic laws for regular expressions;
- Equivalence between FA and RE: from FA to RE.

Note: One of the methods is not in the book!

