Finite Automata Theory and Formal Languages TMV027/DIT321- LP4 2017

Lecture 5
Ana Bove

March 27th 2017

Overview of today's lecture:

- DFA: deterministic finite automata.

Recap: Inductive sets, recursive functions, structural induction

- To define an inductive set S we
- state its basic elements
- and construct new elements in terms of already existing ones;
- To define a recursive function f over an inductively defined set S we
- define f on the basic elements
- and define f on the recursive elements in terms of the result of f for the structurally smaller ones;
- To prove a property P over an inductively defined set S we
- prove that P holds for the basic elements
- and assuming that P holds of certain elements in the set, prove that P holds for all ways of constructing new ones;
- Using structural induction we prove properties over all (finite) elements in an inductive set;
- Mathematical/simple and course-of-values/strong induction, or mutual induction are special cases of structural induction.

Deterministic Finite Automata

We have already seen examples of DFA:

What if we ask for coffee in q ?
tea
coffee

Formally all non-drawn "actions" go to a dead state X in a DFA! We will usually not draw them.

Deterministic Finite Automata: Formal Definition

Definition: A deterministic finite automaton (DFA) is a 5-tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ consisting of:
(1) A finite set Q of states;
(2) A finite set Σ of symbols (alphabet);
(A total transition function $\delta: Q \times \Sigma \rightarrow Q$;

- A start state $q_{0} \in Q$;
(A set $F \subseteq Q$ of final or accepting states.

Example: DFA

Let the DFA $\left(Q, \Sigma, \delta, q_{0}, F\right)$ be given by:

$$
\begin{aligned}
& Q=\left\{q_{0}, q_{1}, q_{2}\right\} \\
& \Sigma=\{0,1\} \\
& F=\left\{q_{2}\right\} \\
& \delta: Q \times \Sigma \rightarrow Q \\
& \delta\left(q_{0}, 0\right)=q_{1} \quad \delta\left(q_{1}, 0\right)=q_{2} \quad \delta\left(q_{2}, 0\right)=q_{1} \\
& \delta\left(q_{0}, 1\right)=q_{0} \quad \delta\left(q_{1}, 1\right)=q_{1} \quad \delta\left(q_{2}, 1\right)=q_{2}
\end{aligned}
$$

What does it do?

How to Represent a DFA?

Transition Diagram: Helps to understand how it works.

The start state is indicated with \rightarrow.
The final states are indicated with a double circle.

Transition Table:

δ	0	1
$\rightarrow q_{0}$	q_{1}	q_{0}
q_{1}	q_{2}	q_{1}
$* q_{2}$	q_{1}	q_{2}

The start state is indicated with \rightarrow.
The final states are indicated with a $*$.

When Does a DFA Accept a Word?

When reading the word the automaton moves according to δ.

Definition: If when we read the input from the start state the automaton stops in a final state, it accepts the word.

Example:

Only the word "then" is accepted.
We have a (non-accepting) dead state q.

Example: DFA

Given $\Sigma=\{0,1\}$ we want to accept the words that contain 010 as a subword, that is, the language $\mathcal{L}=\left\{x 010 y \mid x, y \in \Sigma^{*}\right\}$.

Solution: $\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{0,1\}, \delta, q_{0},\left\{q_{3}\right\}\right)$ given by

Extending the Transition Function to Strings

How can we compute what happens when we read a certain word?

Definition: We extend δ to strings as $\hat{\delta}: Q \times \Sigma^{*} \rightarrow Q$.
We define $\hat{\delta}(q, x)$ by recursion on x.

$$
\begin{aligned}
& \hat{\delta}(q, \epsilon)=q \\
& \hat{\delta}(q, a x)=\hat{\delta}(\delta(q, a), x)
\end{aligned}
$$

Note: $\hat{\delta}(q, a)=\delta(q, a)$ since the string $a=a \epsilon$.
$\hat{\delta}(q, a)=\hat{\delta}(q, a \epsilon)=\hat{\delta}(\delta(q, a), \epsilon)=\delta(q, a)$

Example: In the example of slide 7 , what are $\hat{\delta}\left(q_{0}, 10101\right)$ and $\hat{\delta}\left(q_{0}, 00110\right)$?

Reading the Concatenation of Two Words

Proposition: For any words x and y, and for any state q we have that $\hat{\delta}(q, x y)=\hat{\delta}(\hat{\delta}(q, x), y)$.

Proof: We prove $P(x)=\forall q . \forall y . \hat{\delta}(q, x y)=\hat{\delta}(\hat{\delta}(q, x), y)$ by induction on x.
Base case: $\forall q . \forall y . \hat{\delta}(q, \epsilon y)=\hat{\delta}(q, y)=\hat{\delta}(\hat{\delta}(q, \epsilon), y)$.
Inductive step: Our IH is that $\forall q \cdot \forall y . \hat{\delta}(q, x y)=\hat{\delta}(\hat{\delta}(q, x), y)$.
We should prove that $\forall q . \forall y . \hat{\delta}(q,(a x) y)=\hat{\delta}(\hat{\delta}(q, a x), y)$.
For a given q and y we have that

$$
\begin{aligned}
\hat{\delta}(q,(a x) y) & =\hat{\delta}(q, a(x y)) & & \text { by def of concat } \\
& =\hat{\delta}(\delta(q, a), x y) & & \text { by def of } \hat{\delta} \\
& =\hat{\delta}(\hat{\delta}(\delta(q, a), x), y) & & \text { by IH with state } \delta(q, a) \\
& =\hat{\delta}(\hat{\delta}(q, a x), y) & & \text { by def of } \hat{\delta}
\end{aligned}
$$

Another Definition of $\hat{\delta}$

Recall that we have 2 descriptions of words: $a(b(c(d \epsilon)))=(((\epsilon a) b) c) d$.
We can define $\hat{\delta}^{\prime}$ as: $\quad \hat{\delta}^{\prime}(q, \epsilon)=q$

$$
\hat{\delta}^{\prime}(q, x a)=\delta\left(\hat{\delta}^{\prime}(q, x), a\right)
$$

Proposition: $\forall x . \forall q . \hat{\delta}(q, x)=\hat{\delta}^{\prime}(q, x)$.
Proof: We prove $P(x)=\forall q . \hat{\delta}(q, x)=\hat{\delta}^{\prime}(q, x)$ by induction on x.
Observe that $x a$ is a special case of $x y$ where $y=a$.
Base case is trivial.
Inductive step: The IH is $\forall q . \hat{\delta}(q, x)=\hat{\delta}^{\prime}(q, x)$, then

$$
\begin{aligned}
\hat{\delta}(q, x a) & =\hat{\delta}(\hat{\delta}(q, x), a) & & \text { by previous prop } \\
& =\delta(\hat{\delta}(q, x), a) & & \text { by def of } \hat{\delta} \\
& =\delta\left(\hat{\delta}^{\prime}(q, x), a\right) & & \text { by IH } \\
& =\hat{\delta}^{\prime}(q, x a) & & \text { by def of } \hat{\delta}^{\prime}
\end{aligned}
$$

Language Accepted by a DFA

Definition: The language accepted by the DFA $\left(Q, \Sigma, \delta, q_{0}, F\right)$ is the set $\mathcal{L}=\left\{x \mid x \in \Sigma^{*}, \hat{\delta}\left(q_{0}, x\right) \in F\right\}$.

Example: In the example on slide 7, 10101 is accepted but 00110 is not.

Note: We could write a program that simulates a DFA and let the program tell us whether a certain string is accepted or not!

Functional Representation of a DFA Accepting x010y

```
data Q = Q0 | Q1 | Q2 | Q3
data S = O | I
final :: Q -> Bool
final Q3 = True
final _ = False
delta :: Q -> S -> Q
delta Q0 O = Q1
delta QO I = Q0
delta Q1 O = Q1
delta Q1 I = Q2
delta Q2 O = Q3
delta Q2 I = Q0
delta Q3 _ = Q3
```

Functional Representation of a DFA Accepting x010y

```
delta_hat :: Q -> [S] -> Q
delta_hat q [] = q
delta_hat q (a:xs) = delta_hat (delta q a) xs
accepts :: [S] -> Bool
accepts xs = final (delta_hat QO xs)
```


Accepting by End of String

We could use an automaton to identify properties of a certain string.
What is important then is the state the automaton is in when we finish reading the input.

The set of final states is actually of no interest here and can be omitted.

Example: The following automaton determines whether a binary number is even or odd.

Product of Automata

Given this automaton over $\{0,1\}$ accepting strings with an even number of 0 's:

State A : even number of 0's State B : odd number of 0 's
and this automaton accepting strings with an odd number of 1 's:

State C : even number of 1's State D : odd number of 1 's

How can we use them to accept the strings with an even nr. of 0's and an odd nr. of 1's?

We can run them in parallel!

Example: Product of Automata

State $A C$: even nr. of 0 's and 1's
State $B C$: odd nr. of 0 's and even nr. of 1 's

State AD: even nr. of 0's and odd nr. of 1 's

State BD: odd nr. of 0's and 1's

Which is(are) the final state(s)? AD!

Product Construction

Definition: Given two DFA $D_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and $D_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ with the same alphabet Σ, we can define the product $D=D_{1} \times D_{2}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ as follows:

- $Q=Q_{1} \times Q_{2}$;
- $\delta\left(\left(r_{1}, r_{2}\right), a\right)=\left(\delta_{1}\left(r_{1}, a\right), \delta_{2}\left(r_{2}, a\right)\right) ;$
- $q_{0}=\left(q_{1}, q_{2}\right)$;
- $F=F_{1} \times F_{2}$.

Proposition: $\hat{\delta}\left(\left(r_{1}, r_{2}\right), x\right)=\left(\hat{\delta}_{1}\left(r_{1}, x\right), \hat{\delta}_{2}\left(r_{2}, x\right)\right)$.
Proof: By induction on x.

Example: Product of Automata

Consider a system where users have three states: idle, requesting and using.

Each user k is represented by a simple automaton:

If we have only 2 users, how does the whole system look like?

Example: Product of Automata (cont.)

The complete system is represented by the product of these 2 automata and it has $3 * 3=9$ states.

Language Accepted by a Product Automaton

Proposition: Given two $D F A D_{1}$ and D_{2}, then
$\mathcal{L}\left(D_{1} \times D_{2}\right)=\mathcal{L}\left(D_{1}\right) \cap \mathcal{L}\left(D_{2}\right)$.
Proof: $\hat{\delta}\left(q_{0}, x\right)=\hat{\delta}\left(\left(q_{1}, q_{2}\right), x\right)=\left(\hat{\delta}_{1}\left(q_{1}, x\right), \hat{\delta}_{2}\left(q_{2}, x\right)\right) \in F$
iff $\hat{\delta}_{1}\left(q_{1}, x\right) \in F_{1}$ and $\hat{\delta}_{2}\left(q_{2}, x\right) \in F_{2}$.
That is, $x \in \mathcal{L}\left(D_{1}\right)$ and $x \in \mathcal{L}\left(D_{2}\right)$ iff $x \in \mathcal{L}\left(D_{1}\right) \cap \mathcal{L}\left(D_{2}\right)$.

Note: It can be quite difficult to directly build an automaton accepting the intersection of two languages.

Exercise: Build a DFA for the language that contains the subword abb twice and an even number of a 's.

Variation of the Product

Definition: We define $D_{1} \uplus D_{2}$ similarly to $D_{1} \times D_{2}$ but with a different notion of accepting state:

$$
\text { a state }\left(r_{1}, r_{2}\right) \text { is accepting iff } r_{1} \in F_{1} \text { or } r_{2} \in F_{2}
$$

Proposition: Given two $D F A D_{1}$ and D_{2}, then
$\mathcal{L}\left(D_{1} \uplus D_{2}\right)=\mathcal{L}\left(D_{1}\right) \cup \mathcal{L}\left(D_{2}\right)$.

Example: In the automaton in slide 16, which is(are) the final state(s) if we want the strings with an even number of 0 's or an odd number of 1 's?
$A C, A D$ and $B D$!

Example: Variation of the Product

Let us define an automaton accepting strings with lengths multiple of 2 or of 3 .

Complement

Definition: Given the automaton $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$ we define the complement \bar{D} of D as the automaton $\bar{D}=\left(Q, \Sigma, \delta, q_{0}, Q-F\right)$.

Proposition: Given a $D F A D$ we have that $\mathcal{L}(\bar{D})=\Sigma^{*}-\mathcal{L}(D)=\overline{\mathcal{L}(D)}$.

Example: We transform an automaton accepting strings containing 10 into an automaton accepting strings NOT containing 10.

\Longrightarrow

Accessible Part of a DFA

Consider the DFA $D=\left(\left\{q_{0}, \ldots, q_{3}\right\},\{0,1\}, \delta, q_{0},\left\{q_{1}\right\}\right)$ given by

Intuitively, this is equivalent to the DFA

which is the accessible part of the D.
q_{2} and q_{3} are not accessible from the start state and can be removed.

Accessible States

Definition: The set Acc $=\left\{\hat{\delta}\left(q_{0}, x\right) \mid x \in \Sigma^{*}\right\}$ is the set of accessible states (from the state q_{0}).

Proposition: If $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a $D F A$, then $D^{\prime}=\left(Q \cap A c c, \Sigma,\left.\delta\right|_{Q \cap A c c}, q_{0}, F \cap A c c\right)$ is a DFA such that $\mathcal{L}(D)=\mathcal{L}\left(D^{\prime}\right)$.

Proof: Notice that D^{\prime} is well defined and that $\mathcal{L}\left(D^{\prime}\right) \subseteq \mathcal{L}(D)$.
If $x \in \mathcal{L}(D)$ then $\hat{\delta}\left(q_{0}, x\right) \in F$. By definition $\hat{\delta}\left(q_{0}, x\right) \in$ Acc.
Hence $\hat{\delta}\left(q_{0}, x\right) \in F \cap$ Acc and then $x \in \mathcal{L}\left(D^{\prime}\right)$.

Regular Languages

Recall: Given an alphabet Σ, a language \mathcal{L} is a subset of Σ^{*}, that is, $\mathcal{L} \subseteq \Sigma^{*}$.

Definition: A language $\mathcal{L} \subseteq \Sigma^{*}$ is regular iff there exists a DFA D on the alphabet Σ such that $\mathcal{L}=\mathcal{L}(D)$.

Proposition: If \mathcal{L}_{1} and \mathcal{L}_{2} are regular languages then so are $\mathcal{L}_{1} \cap \mathcal{L}_{2}$, $\mathcal{L}_{1} \cup \mathcal{L}_{2}$ and $\Sigma^{*}-\mathcal{L}_{1}$.

Proof: ...

Overview of Next Lecture

Sections 2.3-2.3.5, brief on 2.4:

- NFA: Non-deterministic finite automata;
- Equivalence between DFA and NFA.

