
Finite Automata Theory and Formal Languages

TMV027/DIT321– LP4 2017

Lecture 3
Ana Bove

March 23rd 2017

Overview of today’s lecture:

Formal proofs;

Simple/strong induction;

Mutual induction;

Inductively defined sets;

Recursively defined functions.

Recap: Logic, Sets, Relations, Functions

Propositions, truth values, connectives, predicates, quantifiers;

Sets, how to define them, membership, operations on sets, equality,
laws;

Relations, properties (reflexive, symmetric, antisymmetric, transitive,
equivalence), partial vs total order, partitions, equivalence class,
quotient;

Functions, domain, codomain, image, partial vs total, injective,
surjective, bijective, inverse, composition, restriction.

March 23rd 2017, Lecture 3 TMV027/DIT321 1/20



How Formal Should a Proof Be?

Depends on the purpose but

Should be convincing;

Should not leave too much out;

The validity of each step should be easily understood.

Valid steps are for example:

Reduction to definition:

“x is divisible by 2” is equivalent to “∃k > 0.x = 2k”;

Use of hypotheses;

Combining previous facts in a valid way:

“Given A⇒ B and A we can conclude B by modus ponens”.

March 23rd 2017, Lecture 3 TMV027/DIT321 2/20

Form of Statements

Statements we want to prove are usually of the form

If H1 and H2 . . . and Hn︸ ︷︷ ︸
hypotheses

then C1 and . . . and Cm︸ ︷︷ ︸
conclusions

or

P1 and . . . and Pk iff Q1 and . . . and Qm

for n > 0;m, k > 1.

Note: Observe that one proves the conclusion assuming the validity of the
hypotheses!

Example: We can easily prove “if 0 = 1 then 4 = 2.000”.

March 23rd 2017, Lecture 3 TMV027/DIT321 3/20



Different Kinds of Proofs

Proofs by Contradiction

If H then C

is logically equivalent to

H and not C implies “the impossible” (bottom, ⊥).

Example: If x 6= 0 then x2 6= 0 vs. x 6= 0 ∧ x2 = 0⇒⊥

Proofs by Contrapositive
“If H then C” is logically equivalent to “If not C then not H”.
See both truth tables!

Proofs by Counterexample
We find an example that “breaks” what we want to prove.

Example: All Natural numbers are odd.

March 23rd 2017, Lecture 3 TMV027/DIT321 4/20

Proving a Property over the Natural Numbers

How to prove an statement over all the Natural numbers?

Example: ∀n ∈ N. 1 + 2 + 3 + ... + n =
n ∗ (n + 1)

2
.

First we need to look at what the Natural numbers are ...

They are an inductively defined set defined by the following two rules:

0 ∈ N
n ∈ N

n + 1 ∈ N

(More on inductively defined sets on page 16.)

March 23rd 2017, Lecture 3 TMV027/DIT321 5/20



Mathematical/Simple Induction

base case︷︸︸︷
P(0)

inductive step︷ ︸︸ ︷

∀n ∈ N.

IH︷︸︸︷
P(n)⇒ P(n + 1)

∀n ∈ N. P(n)︸ ︷︷ ︸
statement to prove

More generally:

P(i),P(i + 1), . . . ,P(j) ∀n ∈ N. j 6 n⇒ (

IH︷︸︸︷
P(n)⇒ P(n + 1))

∀n ∈ N. i 6 n⇒ P(n)

IH ≡ inductive hypothesis
March 23rd 2017, Lecture 3 TMV027/DIT321 6/20

Example: Proof by Induction

Proposition: Let f (0) = 0
f (n + 1) = f (n) + n + 1.

Then, ∀n ∈ N. f (n) =
n ∗ (n + 1)

2
.

Proof: By mathematical induction on n.

Let P(n) be f (n) =
n ∗ (n + 1)

2
.

Base case: We prove that P(0) holds.

Inductive step: We prove that if P(n) holds (our IH) for a given 0 6 n , then P(n + 1)
also holds.

Closure: Now we have established that for all n, P(n) is true!

In particular, P(0),P(1),P(2), . . . ,P(15), . . . hold.

March 23rd 2017, Lecture 3 TMV027/DIT321 7/20



Course-of-Values/Strong Induction

Variant of mathematical induction.

base case︷︸︸︷
P(0)

inductive step︷ ︸︸ ︷

∀n ∈ N. (

IH︷ ︸︸ ︷
∀m ∈ N. 0 6 m 6 n⇒ P(m))⇒ P(n + 1)

∀n ∈ N. P(n)︸ ︷︷ ︸
statement to prove

Or more generally:

P(i),P(i + 1), . . . ,P(j)

∀n ∈ N. i < n⇒ (∀m. i 6 m < n⇒ P(m))⇒ P(n)

∀n ∈ N. i 6 n⇒ P(n)

Here we might have several inductive hypotheses P(m)!
March 23rd 2017, Lecture 3 TMV027/DIT321 8/20

Example: Proof by Induction

Proposition: If n > 8 then n can be written as a sum of 3’s and 5’s.

Proof: By course-of-values induction on n.

Let P(n) be“n can be written as a sum of 3’s and 5’s”.

Base cases: P(8),P(9) and P(10) hold.

Inductive step: We shall prove that if P(8),P(9),P(10), . . . ,P(n) hold for n > 10 (our
IH) then P(n + 1) holds.

Observe that if n > 10 then n > n + 1− 3 > 8.

Hence by inductive hypothesis P(n + 1− 3) holds.

By adding an extra 3 then P(n + 1) holds as well.

Closure: ∀n > 8. n can be written as a sum of 3’s and 5’s.

March 23rd 2017, Lecture 3 TMV027/DIT321 9/20



Example: All Horses have the Same Colour

March 23rd 2017, Lecture 3 TMV027/DIT321 10/20

Example: Proof by Induction

Proposition: All horses have the same colour.

Proof: By mathematical induction on n.

Let P(n) be “in any set of n horses they all have the same colour”.

Base cases: P(0) is not interesting in this example.

P(1) is clearly true.

Inductive step: Let us show that P(n) (our IH) implies P(n + 1).

Let h1, h2, . . . , hn, hn+1 be a set of n + 1 horses.

Take h1, h2, . . . , hn. By IH they all have the same colour.

Take now h2, h3, . . . , hn, hn+1. Again, by IH they all have the same
colour.

Hence, by transitivity, all horses h1, h2, . . . , hn, hn+1 must have the same
colour.

Closure: ∀n. all n horses in the set have the same colour.

March 23rd 2017, Lecture 3 TMV027/DIT321 11/20



Example: What Went Wrong???

March 23rd 2017, Lecture 3 TMV027/DIT321 12/20

Mutual Induction

Sometimes we cannot prove a single statement P(n) but rather a group of
statements P1(n),P2(n), . . . ,Pk(n) simultaneously by induction on n.

This is very common in automata theory where we need an statement for each of the

states of the automata.

March 23rd 2017, Lecture 3 TMV027/DIT321 13/20



Example: Proof by Mutual Induction

Let f , g , h : N→ {0, 1} be as follows:

f (0) = 0 g(0) = 1 h(0) = 0
f (n + 1) = g(n) g(n + 1) = f (n) h(n + 1) = 1− h(n)

Proposition: ∀n. h(n) = f (n).

Proof: If P(n) is “h(n) = f (n)” it does not seem possible to prove P(n)⇒ P(n + 1)
directly.

We strengthen P(n) to P ′(n): Let P ′(n) be “h(n) = f (n) ∧ h(n) = 1− g(n)”.

By mathematical induction on n.

We prove P ′(0) : h(0) = f (0) ∧ h(0) = 1− g(0).

Then we prove that P ′(n)⇒ P ′(n + 1).

Since by induction ∀n. P ′(n) is true then ∀n. P(n) is true.

March 23rd 2017, Lecture 3 TMV027/DIT321 14/20

Recursive Data Types

What are (the data types of) Natural numbers, lists, trees, ... ?

This is how you would defined them in Haskell:

data Nat = Zero | Succ Nat

data List a = Nil | Cons a (List a)

data BTree a = Leaf a | Node a (BTree a) (BTree a)

Observe the similarity between the definition of Nat above and the rules in slide 5...

March 23rd 2017, Lecture 3 TMV027/DIT321 15/20



Inductively Defined Sets

Natural Numbers:

Base case: 0 is a Natural number;
Inductive step: If n is a Natural number then n + 1 is a Natural number;

Closure: There is no other way to construct Natural numbers.

Finite Lists:

Base case: [] is the empty list over any set A;
Inductive step: If x ∈ A and xs is a list over A then x : xs is a list over A;

Closure: There is no other way to construct lists.

Finitely Branching Trees:

Base case: If x ∈ A then (x) is a tree over any set A;
Inductive step: If x ∈ A and t1, . . . , tk are tree over the set A,

then (x , t1, . . . , tk) is a tree over A;

Closure: There is no other way to construct trees.

...

March 23rd 2017, Lecture 3 TMV027/DIT321 16/20

Inductively Defined Sets (Cont.)

To define a set S by induction we need to specify:

Base cases: e1, . . . , em ∈ S ;

Inductive steps: Given s1, . . . , sni ∈ S ,
then c1[s1, . . . , sn1 ], . . . , ck[s1, . . . , snk ] ∈ S ;

Closure: There is no other way to construct elements in S .
(We will usually omit this part.)

Example: The set of simple Boolean expressions is defined as:

Base cases: true and false are Boolean expressions;

Inductive steps: if a and b are Boolean expressions then

(a) not a a and b a or b

are also Boolean expressions.

March 23rd 2017, Lecture 3 TMV027/DIT321 17/20



Recursive Functions over Inductively Defined Sets

To define a function f : S → A over an inductively defined set we need to:

Base cases: f (e1), . . . , f (em) ∈ A;

We define f on all base elements:

Recursive cases: Given s1, . . . , sni ∈ S ,

f (c1[s1, . . . , sn1 ]) = h1[f (s1), . . . , f (sn1)]
... =

...
f (ck[s1, . . . , snk ]) = hk [f (s1), . . . , f (snk )]

We define f on each “complex” element in terms of the
result of f on the structurally smaller elements!

March 23rd 2017, Lecture 3 TMV027/DIT321 18/20

Example: Recursive Functions over Lists

Recall lists are either [] (empty) or x : xs (not empty).

Example: Let us (recursively) define the length of a list.

len [] = 0
len (x : xs) = 1 + len xs

Example: Let us (recursively) define the append over lists.

[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

March 23rd 2017, Lecture 3 TMV027/DIT321 19/20



Overview of Next Lecture

Chapter 5 in the Mathematics for Computer Science book and section 1.2
in the main book:

Structural induction;

Concepts of automata theory.

See even Koen Claessen’s notes on structural induction (see course web page on

Literature).

DO NOT MISS THIS LECTURE!!!

March 23rd 2017, Lecture 3 TMV027/DIT321 20/20


