Finite Automata Theory and Formal Languages TMV027/DIT321- LP4 2017

Lecture 3
Ana Bove

March 23rd 2017

Overview of today's lecture:

- Formal proofs;
- Simple/strong induction;
- Mutual induction;
- Inductively defined sets;
- Recursively defined functions.

Recap: Logic, Sets, Relations, Functions

- Propositions, truth values, connectives, predicates, quantifiers;
- Sets, how to define them, membership, operations on sets, equality, laws;
- Relations, properties (reflexive, symmetric, antisymmetric, transitive, equivalence), partial vs total order, partitions, equivalence class, quotient;
- Functions, domain, codomain, image, partial vs total, injective, surjective, bijective, inverse, composition, restriction.

How Formal Should a Proof Be?

Depends on the purpose but

- Should be convincing;
- Should not leave too much out;
- The validity of each step should be easily understood.

Valid steps are for example:

- Reduction to definition:
" x is divisible by 2 " is equivalent to " $\exists k \geqslant 0 . x=2 k$ ";
- Use of hypotheses;
- Combining previous facts in a valid way:
"Given $A \Rightarrow B$ and A we can conclude B by modus ponens".

Form of Statements
Statements we want to prove are usually of the form

$$
\text { If } \underbrace{H_{1} \text { and } H_{2} \ldots \text { and } H_{n}}_{\text {hypotheses }} \text { then } \underbrace{C_{1} \text { and } \ldots \text { and } C_{m}}_{\text {conclusions }}
$$

or

$$
P_{1} \text { and } \ldots \text { and } P_{k} \text { iff } Q_{1} \text { and } \ldots \text { and } Q_{m}
$$

for $n \geqslant 0 ; m, k \geqslant 1$.

Note: Observe that one proves the conclusion assuming the validity of the hypotheses!

Example: We can easily prove "if $0=1$ then $4=2.000$ ".

Different Kinds of Proofs

Proofs by Contradiction

$$
\text { If } H \text { then } C
$$

is logically equivalent to

$$
H \text { and not } C \text { implies "the impossible" (bottom, } \perp \text {). }
$$

Example: If $x \neq 0$ then $x^{2} \neq 0$ vs. $\quad x \neq 0 \wedge x^{2}=0 \Rightarrow \perp$

Proofs by Contrapositive

"If H then C " is logically equivalent to "If not C then not H ".
See both truth tables!

Proofs by Counterexample

We find an example that "breaks" what we want to prove.
Example: All Natural numbers are odd.

Proving a Property over the Natural Numbers

How to prove an statement over all the Natural numbers?
Example: $\forall n \in \mathbb{N} .1+2+3+\ldots+n=\frac{n *(n+1)}{2}$.

First we need to look at what the Natural numbers are ...

They are an inductively defined set defined by the following two rules:

$$
\overline{0 \in \mathbb{N}} \quad \frac{n \in \mathbb{N}}{n+1 \in \mathbb{N}}
$$

(More on inductively defined sets on page 16.)

Mathematical/Simple Induction

More generally:

$$
\frac{P(i), P(i+1), \ldots, P(j) \quad \forall n \in \mathbb{N} . j \leqslant n \Rightarrow(\overbrace{P(n)}^{\mathrm{IH}} \Rightarrow P(n+1))}{\forall n \in \mathbb{N} . i \leqslant n \Rightarrow P(n)}
$$

$\mathrm{IH} \equiv$ inductive hypothesis

Example: Proof by Induction

Proposition: Let $f(0)=0$

$$
f(n+1)=f(n)+n+1 .
$$

Then, $\forall n \in \mathbb{N} . f(n)=\frac{n *(n+1)}{2}$.

Proof: By mathematical induction on n.
Let $P(n)$ be $f(n)=\frac{n *(n+1)}{2}$.
Base case: We prove that $P(0)$ holds.
Inductive step: We prove that if $P(n)$ holds (our IH) for a given $0 \leqslant n$, then $P(n+1)$ also holds.

Closure: Now we have established that for all $n, P(n)$ is true!
In particular, $P(0), P(1), P(2), \ldots, P(15), \ldots$ hold.

Course-of-Values/Strong Induction

Variant of mathematical induction.
inductive step

Or more generally:

$$
\begin{gathered}
P(i), P(i+1), \ldots, P(j) \\
\forall n \in \mathbb{N} . i<n \Rightarrow(\forall m . i \leqslant m<n \Rightarrow P(m)) \Rightarrow P(n) \\
\forall n \in \mathbb{N} . i \leqslant n \Rightarrow P(n)
\end{gathered}
$$

Here we might have several inductive hypotheses $P(m)$!

Example: Proof by Induction

Proposition: If $n \geqslant 8$ then n can be written as a sum of 3's and 5's.

Proof: By course-of-values induction on n.
Let $P(n)$ be " n can be written as a sum of 3 's and 5 's".
Base cases: $P(8), P(9)$ and $P(10)$ hold.

Inductive step: We shall prove that if $P(8), P(9), P(10), \ldots, P(n)$ hold for $n \geqslant 10$ (our IH) then $P(n+1)$ holds.

Observe that if $n \geqslant 10$ then $n \geqslant n+1-3 \geqslant 8$.
Hence by inductive hypothesis $P(n+1-3)$ holds.
By adding an extra 3 then $P(n+1)$ holds as well.
Closure: $\forall n \geqslant 8 . n$ can be written as a sum of 3 's and 5's.

Example: All Horses have the Same Colour

Example: Proof by Induction

Proposition: All horses have the same colour.

Proof: By mathematical induction on n.
Let $P(n)$ be "in any set of n horses they all have the same colour".
Base cases: $P(0)$ is not interesting in this example.
$P(1)$ is clearly true.
Inductive step: Let us show that $P(n)$ (our IH) implies $P(n+1)$.
Let $h_{1}, h_{2}, \ldots, h_{n}, h_{n+1}$ be a set of $n+1$ horses.
Take $h_{1}, h_{2}, \ldots, h_{n}$. By IH they all have the same colour.
Take now $h_{2}, h_{3}, \ldots, h_{n}, h_{n+1}$. Again, by IH they all have the same colour.
Hence, by transitivity, all horses $h_{1}, h_{2}, \ldots, h_{n}, h_{n+1}$ must have the same colour.

Closure: $\forall n$. all n horses in the set have the same colour.

Example: What Went Wrong???

Mutual Induction

Sometimes we cannot prove a single statement $P(n)$ but rather a group of statements $P_{1}(n), P_{2}(n), \ldots, P_{k}(n)$ simultaneously by induction on n.

This is very common in automata theory where we need an statement for each of the states of the automata.

Example: Proof by Mutual Induction

Let $f, g, h: \mathbb{N} \rightarrow\{0,1\}$ be as follows:

$$
\begin{array}{lll}
f(0)=0 & g(0)=1 & h(0)=0 \\
f(n+1)=g(n) & g(n+1)=f(n) & h(n+1)=1-h(n)
\end{array}
$$

Proposition: $\forall n . h(n)=f(n)$.

Proof: If $P(n)$ is " $h(n)=f(n)$ " it does not seem possible to prove $P(n) \Rightarrow P(n+1)$ directly.

We strengthen $P(n)$ to $P^{\prime}(n)$: Let $P^{\prime}(n)$ be "h(n) $=f(n) \wedge h(n)=1-g(n)$ ".
By mathematical induction on n.
We prove $P^{\prime}(0): h(0)=f(0) \wedge h(0)=1-g(0)$.
Then we prove that $P^{\prime}(n) \Rightarrow P^{\prime}(n+1)$.
Since by induction $\forall n . P^{\prime}(n)$ is true then $\forall n . P(n)$ is true.

Recursive Data Types

What are (the data types of) Natural numbers, lists, trees, ... ?

This is how you would defined them in Haskell:

```
data Nat = Zero | Succ Nat
data List a = Nil | Cons a (List a)
data BTree a = Leaf a | Node a (BTree a) (BTree a)
```

Observe the similarity between the definition of Nat above and the rules in slide $5 \ldots$

Inductively Defined Sets

Natural Numbers:

Base case: 0 is a Natural number;
Inductive step: If n is a Natural number then $n+1$ is a Natural number;
Closure: There is no other way to construct Natural numbers.

Finite Lists:

Base case: [] is the empty list over any set A;
Inductive step: If $x \in A$ and $x s$ is a list over A then $x: x s$ is a list over A;
Closure: There is no other way to construct lists.

Finitely Branching Trees:

Base case: If $x \in A$ then (x) is a tree over any set A;
Inductive step: If $x \in A$ and t_{1}, \ldots, t_{k} are tree over the set A, then $\left(x, t_{1}, \ldots, t_{k}\right)$ is a tree over A;
Closure: There is no other way to construct trees.

Inductively Defined Sets (Cont.)

To define a set S by induction we need to specify:
Base cases: $e_{1}, \ldots, e_{m} \in S$;
Inductive steps: Given $s_{1}, \ldots, s_{n_{i}} \in S$, then $\mathrm{c}_{1}\left[s_{1}, \ldots, s_{n_{1}}\right], \ldots, \mathrm{c}_{\mathrm{k}}\left[s_{1}, \ldots, s_{n_{k}}\right] \in S ;$

Closure: There is no other way to construct elements in S. (We will usually omit this part.)

Example: The set of simple Boolean expressions is defined as:
Base cases: true and false are Boolean expressions;
Inductive steps: if a and b are Boolean expressions then
(a) not $a \quad a$ and $b \quad a$ or b
are also Boolean expressions.

Recursive Functions over Inductively Defined Sets

To define a function $f: S \rightarrow A$ over an inductively defined set we need to:
Base cases: $f\left(e_{1}\right), \ldots, f\left(e_{m}\right) \in A$;
We define f on all base elements:

Recursive cases: Given $s_{1}, \ldots, s_{n_{i}} \in S$,

$$
\begin{array}{ccc}
f\left(c_{1}\left[s_{1}, \ldots, s_{n_{1}}\right]\right) & = & h_{1}\left[f\left(s_{1}\right), \ldots, f\left(s_{n_{1}}\right)\right] \\
\vdots & & \vdots \\
f\left(c_{k}\left[s_{1}, \ldots, s_{n_{k}}\right]\right) & = & h_{k}\left[f\left(s_{1}\right), \ldots, f\left(s_{n_{k}}\right)\right]
\end{array}
$$

We define f on each "complex" element in terms of the result of f on the structurally smaller elements!

Example: Recursive Functions over Lists

Recall lists are either [] (empty) or x : xs (not empty).

Example: Let us (recursively) define the length of a list.

$$
\begin{aligned}
& \text { len }[]=0 \\
& \text { len }(x: x s)=1+\text { len } x s
\end{aligned}
$$

Example: Let us (recursively) define the append over lists.

$$
\begin{aligned}
& {[]+1 y s=y s} \\
& (x: x s)++y s=x:(x s++y s)
\end{aligned}
$$

Overview of Next Lecture

Chapter 5 in the Mathematics for Computer Science book and section 1.2 in the main book:

- Structural induction;
- Concepts of automata theory.

See even Koen Claessen's notes on structural induction (see course web page on Literature).

DO NOT MISS THIS LECTURE!!!

