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Overview of today’s lecture:

Logic;

Sets;

Relations;

Functions.

Propositional Logic

Definition: A proposition is an statement which is either true (T ) or false
(F ).

Example: My name is Ana.

I come from Uruguay.

I have 3 children.

I can speak 4 different languages.

It is not always known what the truth value of a proposition is.

Goldbach’s conjecture: Every even integer greater than 2 can be expressed as the sum

of two primes.
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Connective and Truth Tables

We can combine propositions by using connectives:

¬: negation, not

∧: conjunction, and

∨: disjunction, or

⇒: conditional, if-then, →
⇔: equivalence, if-and-only-if, ↔

These are their truth tables (observe the conditional...):

p q ¬p p ∧ q p ∨ q p ⇒ q p ⇔ q

T T F T T T T

T F F F T F F

F T T F T T F

F F T F F T T
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Conditionals

Example: Is the following statement true?

If I come from Mars then my skin is green.

Recall truth table for conditional:

I come from Mars my skin is green I come from Mars⇒ my skin is green

T T T

T F F

F T T

F F T

I am NOT from Mars!

So the whole proposition is true!
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Combined Propositions

Example: Is the following statement true?

Either you study and you will pass the exam, or your won’t pass
the exam.

Let us construct the truth table!

Let p be “you study”.
Let q be “you will pass the exam”.

Then the sentence is expressed by (p ∧ q) ∨ ¬q.

p q p ∧ q ¬q (p ∧ q) ∨ ¬q
T T T F T

T F F T T

F T F F F

F F F T T
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Tautologies and Logical Equivalence

Definition: A proposition that is always true is called a tautology.

Example: The law of the excluded middle is a tautology in classical logic

p ¬p p ∨ ¬p
T F T

F T T

Definition: Two propositions are logically equivalent (≡) if they have the
same truth table.

Example: p ⇒ q ≡ ¬p ∨ q:

p q p ⇒ q ¬p ¬p ∨ q

T T T F T

T F F F F

F T T T T

F F T T T
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Laws of (Classical) Logic

Equivalence: p ⇔ q ≡ (p ⇒ q) ∧ (q ⇒ p)
Implication: p ⇒ q ≡ ¬p ∨ q

Double negation: ¬¬p ≡ p
Idempotent: p ∧ p ≡ p p ∨ p ≡ p

Commutative: p ∧ q ≡ q ∧ p p ∨ q ≡ q ∨ p
Associative: (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
Distributive: p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
de Morgan: ¬(p ∧ q) ≡ ¬p ∨ ¬q ¬(p ∨ q) ≡ ¬p ∧ ¬q

Identity: p ∧ T ≡ p p ∨ F ≡ p
Annihilation: p ∧ F ≡ F p ∨ T ≡ T

Inverse: p ∧ ¬p ≡ F p ∨ ¬p ≡ T
Absorption: p ∧ (p ∨ q) ≡ p p ∨ (p ∧ q) ≡ p

Exercise: Construct the truth tables and check the logical equivalences!
March 21st 2017, Lecture 2 TMV027/DIT321 6/28

Statements with Variables

By using variables we could talk about any element in a certain domain.

Example: Consider the following property for x ∈ N (Natural numbers):

x > 4⇒ x > 2

When statements have variables we are actually working on predicate logic.

Reasoning in predicate logic is more complicated since variables can range
over an infinite set of values.
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Predicate Logic

Definition: A predicate is a statement with one or more variables.

When we assign values to all variable in a predicate we get a proposition.

Definition: The expressions for all (∀) and exists (∃) are called quantifiers.

Example: Express the following 2 statements in predicate logic:

For every number x there is a number y such that x is equal to y
∀x .∃y .x = y

There is a number x such that for every number y then x is equal to y
∃x .∀y .x = y

Are they the same statement?
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More Laws of (Classical) Logic

We have that
¬∀x .P(x) ≡ ∃x .¬P(x)

and
¬∃x .P(x) ≡ ∀x .¬P(x)
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Sets

Definition: A set is a collection of well defined and distinct objects or
elements.

A set might be finite or infinite.

Sets can be described/defined in different ways:

Enumeration: mainly finite sets, sometimes with help of . . .

WeekDays = {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday}
OddNat = {1, 3, 5, 7, . . . }

Characteristic Property: OddNat = {x ∈ N | x is odd}.

Operations on Other Sets: A ∪ B, A ∩ B, ... (see slide 12)

Inductive Definitions: More on this next lecture ...
...
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Membership on Sets

Definition: We denote that x is an element of set A by x ∈ A.

It is important to determine whether x ∈ A or x /∈ A.
However this is not always possible.

Example: Let P be the set of programs that always terminate.

Can we always be sure if a certain program pgr ∈ P?

Russell’s paradox: Let R = {x | x /∈ x}.

Then R ∈ R ⇔ R /∈ R!
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Some Operations and Properties on Sets

Union: A ∪ B = {x | x ∈ A or x ∈ B}.

Intersection: A ∩ B = {x | x ∈ A and x ∈ B}.

Cartesian Product: A× B = {(x , y) | x ∈ A and y ∈ B}.
Observe this is a collection of ordered pairs! (x , y) 6= (y , x).

Difference: S − A = {x | x ∈ S and x /∈ A}.
Complement: When the set S is known, S − A is written A.

S − A is sometimes denoted S\A and A is sometimes denoted A′.

Subset: A ⊆ B if for all x ∈ A then x ∈ B.

Equality: A = B if A ⊆ B and B ⊆ A.

Proper Subset: A ⊂ B if A ⊆ B and A 6= B.
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Some Particular Sets

Empty set: ∅ is the set with no elements.
We have ∅ ⊆ S for any set S .

Singleton sets: Sets with only one element: {p0}, {p1}.

Finite sets: Set with a finite number n of elements:
{p1, . . . , pn} = {p1} ∪ . . . ∪ {pn}.

Power sets: Pow(S) the set of all subsets of the set S .
Pow(S) = {A | A ⊆ S}.
Observe that ∅ ∈ Pow(S) and S ∈ Pow(S).

Also, if |S | = n then |Pow(S)| = 2n.

Note: ∅ 6= {∅}!!
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Algebraic Laws for Sets

Idempotent: A ∪ A = A A ∩ A = A
Commutative: A ∪ B = B ∪ A A ∩ B = B ∩ A

Associative: (A ∪ B) ∪ C = A ∪ (B ∪ C )
(A ∩ B) ∩ C = A ∩ (B ∩ C )

Distributive: A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C )
A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )

de Morgan: (A ∪ B) = A ∩ B (A ∩ B) = A ∪ B
Laws for ∅ : A ∪ ∅ = A A ∩ ∅ = ∅

Laws for Universe: A ∪ U = U A ∩ U = A

Complements: A = A A ∪ A = U A ∩ A = ∅
U = ∅ ∅ = U

Absorption: A ∪ (A ∩ B) = A A ∩ (A ∪ B) = A

Exercise: Prove the equality of the sets by showing the double inclusion!
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Relations

Definition: A (binary) relation R between two sets A and B is a subset of
A× B, that is, R ⊆ A× B.

Notation: (a, b) ∈ R, a R b, R(a, b), (a, b) satisfies R.

Definition: A relation R over a set S , that is R ⊆ S × S , is

Reflexive if ∀a ∈ S . a R a;

Symmetric if ∀a, b ∈ S . a R b ⇒ b R a;

Transitive if ∀a, b, c ∈ S . a R b ∧ b R c ⇒ a R c .

Definition: If S has an equality relation =⊆ S × S and R ⊆ S × S then
R is antisymmetric if ∀a, b ∈ S . a R b ∧ b R a⇒ a = b.
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Example of Relations

Let S = {1, 2, 3} and let =⊆ S × S be as expected.
Which of these relations are reflexive, symmetric, antisymmetric, and/or
transitive?

Play at kahoot.it!

R1 = ∅ Symmetric, Antisymmetric, Transitive

R2 = {(1, 2)} Antisymmetric, Transitive

R3 = {(1, 2), (2, 3)} Antisymmetric

R4 = {(1, 2), (2, 3), (1, 3)} Antisymmetric, Transitive

R5 = {(1, 2), (2, 1)} Symmetric

R6 = {(1, 2), (2, 1), (1, 1)} Symmetric

R7 = {(1, 2), (2, 1), (1, 1), (2, 2)} Symmetric, Transitive

R8 = {(1, 2), (2, 1), (1, 1), (2, 2), (3, 3)} Reflexive, Symm, Trans
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Equivalent Relations and Orders

Definition: A relation R over a set S that is reflexive, symmetric and
transitive is called an equivalence relation over S .

Example: = is an equivalence over N.

Definition: A relation R over a set S that is reflexive, antisymmetric and
transitive is called a partial order over S .

Example: 6 is a partial order over N but and < not!

Definition: A relation R over a set S is called a total order over S if:

R is a partial order;

∀a, b ∈ S . a R b ∨ b R a.

Example: 6 is a total order over N.
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Partitions

Definition: A set P is a partition over the set S if:

Every element of P is a non-empty subset of S

∀C ∈ P. C 6= ∅ ∧ C ⊆ S ;

Elements of P are pairwise disjoint

∀C1,C2 ∈ P. C1 6= C2 ⇒ C1 ∩ C2 = ∅;

The union of the elements of P is equal to S

⋃

C∈P
C = S .
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Equivalent Classes

Let R be an equivalent relation over S .

Definition: If a ∈ S , then the equivalent class of a in S is the set defined
as [a] = {b ∈ S | a R b}.

Lemma: ∀a, b ∈ S , [a] = [b] iff a R b.

Theorem: The set of all equivalence classes in S w.r.t. R form the
quotient partition over S .

Notation: This partition is denoted as S/R.

Example: The rational numbers Q can be formally defined as the equivalence classes of

the quotient set Z× Z+/ ∼, where ∼ is the equivalence relation defined by

(m1, n1) ∼ (m2, n2) iff m1n2 =Z m2n1.
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Functions

Definition: A function f from A to B is a relation f ⊆ A× B such that,
given x ∈ A and y , z ∈ B, if x f y and x f z then y = z .

Notation: If f is a function from A to B we write f : A→ B.

Notation: That x f y is usually written as f (x) = y .

Example: sq : Z→ N such that sq(n) = n2.

Observe that sq(2) = 4 and sq(−2) = 4.
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Domain, Codomain, Range and Image

Let f : A→ B.

Definition: The sets A and B are called the domain and the codomain of
the function, respectively.

Definition: The set Dom(f ) or Domf for which the function is defined is
given by {x ∈ A | ∃y ∈ B.f (x) = y} ⊆ A.

We will also refer to Dom(f ) as the domain of f .

Definition: The set {y ∈ B | ∃x ∈ A.f (x) = y} ⊆ B is called the range or
image of f and denoted Im(f ) or Imf .

Example: The image of sq is NOT all N but {0, 1, 4, 9, 16, 25, 36, . . .}.
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Total and Partial Functions

Let f : A→ B.

Definition: If Dom(f ) = A then f is called a total function.

Example: sq is a total function.

Definition: If Dom(f ) ⊂ A then f is called a partial function.

Example: sqr : N→ N such that sqr(n) =
√
n is a partial function.

Note: In some cases it is not known if a function is partial or total.

Example: It is not known if collatz : N→ N is total or not.

collatz(0) = 1
collatz(1) = 1

collatz(n) =

{
collatz(n/2) if n even
collatz(3n + 1) if n odd
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Injective or One-to-one Functions

Let f : A→ B.

Definition: f is called an injective or one-to-one function if
∀x , y ∈ A.f (x) = f (y)⇒ x = y .

Alternatively:

Definition: f is called an injective or one-to-one function if
∀x , y ∈ A.x 6= y ⇒ f (x) 6= f (y).

Exercise: Prove that double : N→ N such that double(n) = 2n is injective.
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The Pigeonhole Principle

“If you have more pigeons than pigeonholes and each pigeon flies into
some pigeonhole, then there must be at least one hole with more than one
pigeon.”

More formally: if f : A→ B and |Domf (A)| > |B| then f cannot be
injective.
That is, there must exist x , y ∈ A such that x 6= y and f (x) = f (y).

This principle is often used to show the existence of an object without
building this object explicitly.

Example: In a room with at least 13 people, at least 2 of them are born the same

month.
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Surjective or Onto Functions

Let f : A→ B.

Definition: f is called an surjective or onto function if
∀y ∈ B.∃x ∈ A.f (x) = y .

Note: If f is surjective then Im(f ) = B.

Exercise: Prove that f : R→ R such that f(n) = 2n + 1 is surjective.
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Bijective and Inverse Functions

Definition: A function that is both injective and surjective is called a
bijective function.

Definition: If f : A→ B is a bijective function, then there exists an
inverse function f −1 : B → A such that ∀x ∈ A.f −1(f (x)) = x and
∀y ∈ B.f (f −1(y)) = y .

Exercise: Is g : Z→ Z such that g(n) = 2n + 1 bijective?

Exercise: Which is the inverse of f : R→ R such that f(n) = 2n + 1?

Lemma: If f : A→ B is a bijective function, then f −1 : B → Domf (A) is
also bijective.

March 21st 2017, Lecture 2 TMV027/DIT321 26/28

Composition and Restriction

Definition: Let f : A→ B and g : B → C . The composition
g ◦ f : A→ C is defined as g ◦ f (x) = g(f (x)).

Note: We need that Im(f ) ⊆ Dom(g) for the composition to be defined.

Example: If f : Z→ Z is such that f(n) = 3n − 2 and g : R→ R is such that

g(m) = m/2, then g ◦ f : Z→ R is g ◦ f(x) = (3x − 2)/2.

Definition: Let f : A→ B and S ⊂ A. The restriction of f to S is the
function f|S : S → B such that f|S(x) = f (x), ∀x ∈ S .
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Overview of Next Lecture

Sections 1.2–1.4 in the main book and chapters 1 and 5 in the
Mathematics for Computer Science book:

Formal Proofs;

Simple/Strong Induction;

Mutual induction;

Inductively defined sets;

Recursively defined functions.

See even Koen Claessen’s notes on proof methods (see course web page on Literature).

DO NOT MISS THIS LECTURE!!!
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