Finite Automata Theory and Formal Languages TMV027/DIT321– LP4 2017

Lecture 14 Ana Bove

May 11th 2017

Overview of today's lecture:

- Closure properties of CFL;
- Decision properties of CFL;
- Guest lecture by *Andreas Abel* on Programming Language Technology: Putting Formal Languages to Work.

Recap: Context-free Grammars

- Regular grammars;
- Regular languages are also context-free;
- Chomsky hierarchy;
- Simplification of grammars:
 - Elimination of *e*-productions;
 - Elimination of unit productions;
 - Elimination of useless symbols:
 - Elimination of non-generating symbols;
 - Elimination of non-reachable symbols;
- Chomsky normal forms;
- Pumping lemma for context-free languages.

Closure under Union

Theorem: Let $G_1 = (V_1, T, \mathcal{R}_1, S_1)$ and $G_2 = (V_2, T, \mathcal{R}_2, S_2)$ be CFG. Then $\mathcal{L}(G_1) \cup \mathcal{L}(G_2)$ is a context-free language.

Proof: Let us assume $V_1 \cap V_2 = \emptyset$ (easy to get via renaming).

Let S be a fresh variable.

We construct $G = (V_1 \cup V_2 \cup \{S\}, T, \mathcal{R}_1 \cup \mathcal{R}_2 \cup \{S \rightarrow S_1 \mid S_2\}, S).$

It is now easy to see that $\mathcal{L}(G) = \mathcal{L}(G_1) \cup \mathcal{L}(G_2)$ since a derivation will have the form

 $S \Rightarrow S_1 \Rightarrow^* w$ if $w \in \mathcal{L}(G_1)$

or

$$S \Rightarrow S_2 \Rightarrow^* w$$
 if $w \in \mathcal{L}(G_2)$

May 11th 2017, Lecture 14

TMV027/DIT32

2/20

Closure under Concatenation

Theorem: Let $G_1 = (V_1, T, \mathcal{R}_1, S_1)$ and $G_2 = (V_2, T, \mathcal{R}_2, S_2)$ be CFG. Then $\mathcal{L}(G_1)\mathcal{L}(G_2)$ is a context-free language.

Proof: Again, let us assume $V_1 \cap V_2 = \emptyset$.

Let S be a fresh variable.

We construct $G = (V_1 \cup V_2 \cup \{S\}, T, \mathcal{R}_1 \cup \mathcal{R}_2 \cup \{S \rightarrow S_1S_2\}, S).$

It is now easy to see that $\mathcal{L}(G) = \mathcal{L}(G_1)\mathcal{L}(G_2)$ since a derivation will have the form

 $S \Rightarrow S_1 S_2 \Rightarrow^* uv$

with

$$S_1 \Rightarrow^* u$$
 and $S_2 \Rightarrow^* v$

for $u \in \mathcal{L}(G_1)$ and $v \in \mathcal{L}(G_2)$.

Closure under Closure

Theorem: Let $G = (V, T, \mathcal{R}, S)$ be a CFG. Then $\mathcal{L}(G)^+$ and $\mathcal{L}(G)^*$ are context-free languages.

Proof: Let S' be a fresh variable.

We construct $G + = (V \cup \{S'\}, T, \mathcal{R} \cup \{S' \rightarrow S \mid SS'\}, S')$ and $G * = (V \cup \{S'\}, T, \mathcal{R} \cup \{S' \rightarrow \epsilon \mid SS'\}, S')$.

It is easy to see that $S' \Rightarrow \epsilon$ in G*.

Also that $S' \Rightarrow^* S \Rightarrow^* w$ if $w \in \mathcal{L}(G)$ is a valid derivation both in G+ and in G*.

In addition, if $w_1, \ldots, w_k \in \mathcal{L}(G)$, it is easy to see that the derivation

$$S' \Rightarrow SS' \Rightarrow^* w_1S' \Rightarrow w_1SS' \Rightarrow^* w_1w_2S' \Rightarrow^* \dots$$

$$\Rightarrow^* w_1w_2 \dots w_{k-1}S' \Rightarrow^* w_1w_2 \dots w_{k-1}S \Rightarrow^* w_1w_2 \dots w_{k-1}w_k$$

is a valid derivation both in G+ and in G*.

May 11th 2017, Lecture 14

MV027/DIT3

4/20

Non Closure under Intersection

Example: Consider the following languages over $\{a, b, c\}$:

$$\mathcal{L}_1 = \{a^k b^k c^m \mid k, m > 0\}$$
$$\mathcal{L}_2 = \{a^m b^k c^k \mid k, m > 0\}$$

It is easy to give CFG generating both \mathcal{L}_1 and \mathcal{L}_2 , hence \mathcal{L}_1 and \mathcal{L}_2 are CFL.

However $\mathcal{L}_1 \cap \mathcal{L}_2 = \{a^k b^k c^k \mid k > 0\}$ is not a CFL (see slide 29 lecture 13).

Closure under Intersection with Regular Language

Theorem: If \mathcal{L} is a CFL and \mathcal{P} is a RL then $\mathcal{L} \cap \mathcal{P}$ is a CFL.

Proof: See Theorem 7.27 in the book. (It uses *push-down automata* which we have not seen.)

Example: Consider the following language over $\Sigma = \{0, 1\}$:

 $\mathcal{L} = \{ww \mid w \in \Sigma^*\}$

Consider now $\mathcal{L}' = \mathcal{L} \cap \mathcal{L}(0^*1^*0^*1^*) = \{0^n 1^m 0^n 1^m \mid n, m \ge 0\}.$

 \mathcal{L}' is not a CFL (see additional exercise 4 in exercises for CFL).

Hence \mathcal{L} cannot be a CFL since $\mathcal{L}(0^*1^*0^*1^*)$ is a RL.

May 11th 2017, Lecture 14

TMV027/DIT321

6/20

Non Closure under Complement

Theorem: CFL are not closed under complement.

Proof: Notice that

$$\mathcal{L}_1 \cap \mathcal{L}_2 = \overline{\overline{\mathcal{L}_1} \cup \overline{\mathcal{L}_2}}$$

If CFL are closed under complement then they should be closed under intersection (since they are closed under union).

Then CFL are in general not closed under complement.

Closure under Difference?

Theorem: CFL are not closed under difference.

Proof: Let \mathcal{L} be a CFL over Σ .

It is easy to give a CFG that generates Σ^* .

Observe that $\overline{\mathcal{L}} = \Sigma^* - \mathcal{L}$.

Then if CFL are closed under difference they would also be closed under complement.

Theorem: If \mathcal{L} is a CFL and \mathcal{P} is a RL then $\mathcal{L} - \mathcal{P}$ is a CFL.

Proof: Observe that $\overline{\mathcal{P}}$ is a RL and $\mathcal{L} - \mathcal{P} = \mathcal{L} \cap \overline{\mathcal{P}}$.

May 11th 2017, Lecture 14

TMV027/DIT32

Closure under Reversal and Prefix

Theorem: If \mathcal{L} is a CFL then so is $\mathcal{L}^{\mathsf{r}} = \{\mathsf{rev}(w) \mid w \in \mathcal{L}\}.$

Proof: Given a CFG $G = (V, T, \mathcal{R}, S)$ for \mathcal{L} we construct the grammar $G^{\mathsf{r}} = (V, T, \mathcal{R}^{\mathsf{r}}, S)$ where \mathcal{R}^{r} is such that, for each rule $A \to \alpha$ in \mathcal{R} , then $A \to \mathsf{rev}(\alpha)$ is in \mathcal{R}^{r} .

One should show by induction on the length of the derivations in G and G^r that $\mathcal{L}(G^r) = \mathcal{L}^r$.

Theorem: If \mathcal{L} is a CFL then so is $Prefix(\mathcal{L})$.

Proof: For closure under prefix see exercise 7.3.1 part a) in the book.

Decision Properties of Context-Free Languages

Very little can be answered when it comes to CFL.

The major tests we can answer are whether:

• The language is empty;

(See the algorithm that tests for generating symbols in slide 9 lecture 13: if \mathcal{L} is a CFL given by a grammar with start variable S, then \mathcal{L} is empty if S is not generating.)

• A certain string belongs to the language.

May 11th 2017, Lecture 14

TMV027/DIT321

Testing Membership in a Context-Free Language

Checking if $w \in \mathcal{L}(G)$, where |w| = n, by trying all productions may be exponential on n.

An efficient way to check for membership in a CFL is based on the idea of *dynamic programming*.

(Method for solving complex problems by breaking them down into simpler problems, applicable mainly to problems where many of their subproblems are really the same; not to be confused with the *divide and conquer* strategy.)

The algorithm is called the *CYK algorithm* after the 3 people who independently discovered the idea: Cock, Younger and Kasami.

It is a $O(n^3)$ algorithm.

Example: CYK Algorithm

Consider the following grammar in CNF given by the rules

$$S \rightarrow AB \mid BA \qquad A \rightarrow AS \mid a \qquad B \rightarrow BS \mid b$$

and starting symbol S.

Does abba belong to the language generated by the grammar?

We fill the corresponding table:

$$\{S\}_{abba} \\ \emptyset_{abb} \quad \{B\}_{bba} \\ \{S\}_{ab} \quad \emptyset_{bb} \quad \{S\}_{ba} \\ \{A\}_a \quad \{B\}_b \quad \{B\}_b \quad \{A\}_a \\ \hline a \qquad b \qquad b \qquad a$$

Then $S \Rightarrow^* abba$.

The CYK Algorithm

Let
$$G = (V, T, \mathcal{R}, S)$$
 be a CFG in CNF and $w = a_1 a_2 \dots a_n \in T^*$.
Does $w \in \mathcal{L}(G)$?

In the CYK algorithm we fill a table

where $V_{ij} \subseteq V$ is the set of A's such that $A \Rightarrow^* a_i a_{i+1} \dots a_j$.

We want to know if $S \in V_{1n}$, hence $S \Rightarrow^* a_1 a_2 \dots a_n$. May 11th 2017, Lecture 14 TMV027/DIT321

CYK Algorithm: Observations • Each row corresponds to the substrings of a certain length: bottom row is length 1, second from bottom is length 2, top row is length n; • We work row by row upwards and compute the V_{ij} 's; • In the bottom row we have i = j, that is, ways of generating a_i ; • V_{ij} is the set of variables generating $a_i a_{i+1} \dots a_j$ of length j - i + 1(hence, V_{ij} is in row j - i + 1); • In the rows below that of V_{ij} we have all ways to generate shorter strings, including all prefixes and suffixes of $a_i a_{i+1} \dots a_i$. TMV027/DIT32 CYK Algorithm: Table Filling We compute V_{ij} as follows (remember we work with a CFG in CNF): Base case: First row in the table. Here i = j. Then $V_{ii} = \{A \mid A \rightarrow a_i \in \mathcal{R}\}.$ Induction step: To compute V_{ij} for i < j we have all V_{pq} 's in rows below. The length of the string is at least 2, so $A \Rightarrow^* a_i a_{i+1} \dots a_i$ starts with $A \Rightarrow BC$ such that $B \Rightarrow^* a_i a_{i+1} \dots a_k$ and $C \Rightarrow^* a_{k+1} \dots a_i$ for some k. So $A \in V_{ii}$ if $\exists k, i \leq k < j$ such that • $B \in V_{ik}$ and $C \in V_{(k+1)j}$; • $A \rightarrow BC \in \mathcal{R}$. We need to look at $(V_{ii}, V_{(i+1)j}), (V_{i(i+1)}, V_{(i+2)j}), \ldots, (V_{i(j-1)}, V_{jj}).$

15/20

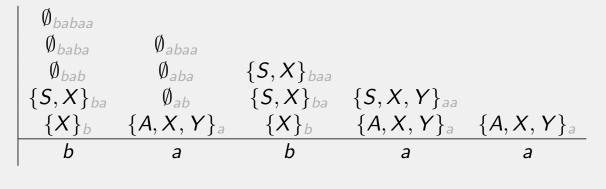
Example: CYK Algorithm

Consider the grammar given by the rules

and starting symbol S.

Does babaa belong to the language generated by the grammar?

We fill the corresponding table:



 $S \notin V_{15}$ then $S \Rightarrow^* babaa$.

May 11th 2017, Lecture 14

Undecidable Problems for Context-Free Grammars/Languages

Definition: An *undecidable problem* is a decision problem for which it is impossible to construct a single algorithm that always leads to a correct yes-or-no answer.

Example: Halting problem: does this program terminate?

The following problems are undecidable:

- Is the CFG G ambiguous?
- Is the CFL $\mathcal L$ inherently ambiguous?
- If $\mathcal{L}(G_1)$ and $\mathcal{L}(G_2)$ are CFL, is $\mathcal{L}(G_1) \cap \mathcal{L}(G_2) = \emptyset$?
- If $\mathcal{L}(G_1)$ and $\mathcal{L}(G_2)$ are CFL, is $\mathcal{L}(G_1) = \mathcal{L}(G_2)$? is $\mathcal{L}(G_1) \subseteq \mathcal{L}(G_2)$?
- If $\mathcal{L}(G)$ is a CFL and \mathcal{P} a RL, is $\mathcal{P} = \mathcal{L}(G)$? is $\mathcal{P} \subseteq \mathcal{L}(G)$?
- If $\mathcal{L}(G)$ is a CFL over Σ , is $\mathcal{L}(G) = \Sigma^*$?

Learning Outcome of the Course (revisited)

After completion of this course, the student should be able to:

- Explain and manipulate the different concepts in automata theory and *formal* languages;
- Have a clear understanding about the equivalence between (non-)deterministic finite automata and regular expressions;
- Acquire a good understanding of the power and the limitations of regular languages and *context-free languages*;
- Prove properties of languages, *grammars* and automata with rigorously formal mathematical methods;
- Design automata, regular expressions and *context-free grammars* accepting or generating a certain language;
- Describe the language accepted by an automata, or generated by a regular expression or a *context-free grammar*;
- Simplify automata and *context-free grammars*;
- Determine if a certain word belongs to a language;
- Define Turing machines performing simple tasks;
- Differentiate and manipulate formal descriptions of languages, automata and grammars.

TMV027/DIT321

```
May 11th 2017, Lecture 14
```

Overview of next Week

Mon 15	Tue 16	Wed 17	Thu 18	Fri 19
				8-10 EL43 In- dividual help
	10-12 EA Exercise			
Lec 13-15 HB3 PDA. TM.			Lec 13-15 HB3 TM. Summary.	
15-17 EA Exercise		15-17 EL41 Consultation		

Assignment 6: CFL. *Deadline:* Sunday May 21th 23:59.

Overview of Next Lecture

Sections 6, 8 (just a bit of both):

- Push-down automata;
- Turing machines.

May 11th 2017, Lecture 14

TMV027/DIT32

20/20