Finite Automata Theory and Formal Languages TMV027/DIT321- LP4 2017

Lecture 13
Ana Bove

May 8th 2017

Overview of today's lecture:

- Regular grammars;
- Chomsky hierarchy;
- Simplifications and normal forms for CFL;
- Pumping lemma for CFL.

Recap: Context-Free Grammars

- Equivalence between recursive inference, (leftmost/rightmost) derivations and parse trees;
- Ambiguous grammars;
- Inherent ambiguity;
- Proofs about grammars and languages.

Regular Grammars

Definition: A grammar where all rules are of the form $A \rightarrow a B$ or $A \rightarrow \epsilon$ is called left regular.

Definition: A grammar where all rules are of the form $A \rightarrow B$ a or $A \rightarrow \epsilon$ is called right regular.

Note: We will see that regular grammars generate the regular languages.

Example: Regular Grammars

A DFA that generates the language over $\{0,1\}$ with an even number of 0 's:

Exercise: What could the left regular grammar be for this language?
Let q_{0} be the start variable.

$$
\begin{aligned}
& q_{0} \rightarrow \epsilon\left|0 q_{1}\right| 1 q_{0} \\
& q_{1} \rightarrow 0 q_{0} \mid 1 q_{1}
\end{aligned}
$$

Example: Regular Grammars

Consider the following DFA over $\{0,1\}$:

Exercise: What could the left regular grammar be for this language?
Let q_{0} be the start variable.

$$
\begin{aligned}
q_{0} \rightarrow 0 q_{1}\left|1 q_{0} \quad q_{1} \rightarrow 0 q_{1}\right| 1 q_{2} \quad q_{2} & \rightarrow \epsilon\left|0 q_{1}\right| 1 q_{2} \\
q_{0} \Rightarrow 1 q_{0} \Rightarrow 10 q_{1} \Rightarrow 100 q_{1} \Rightarrow 1001 q_{2} \Rightarrow 10010 q_{1} & \Rightarrow 100101 q_{2} \Rightarrow 100101
\end{aligned}
$$

Exercise: What could the right regular grammar be for this language?
Let q_{2} be the start variable.

$$
\begin{gathered}
q_{0} \rightarrow \epsilon\left|q_{0} 1 \quad q_{1} \rightarrow q_{0} 0\right| q_{1} 0\left|q_{2} 0 \quad q_{2} \rightarrow q_{1} 1\right| q_{2} 1 \\
q_{2} \Rightarrow q_{1} 1 \Rightarrow q_{2} 01 \Rightarrow q_{1} 101 \Rightarrow q_{1} 0101 \Rightarrow q_{0} 00101 \Rightarrow q_{0} 100101 \Rightarrow 100101
\end{gathered}
$$

Regular Languages and Context-Free Languages

Theorem: If \mathcal{L} is a regular language then \mathcal{L} is context-free.

Proof: If \mathcal{L} is a regular language then $\mathcal{L}=\mathcal{L}(D)$ for a DFA D.
Let $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$.
We define a CFG $G=\left(Q, \Sigma, \mathcal{R}, q_{0}\right)$ where \mathcal{R} is the set of productions:

- $p \rightarrow a q$ if $\delta(p, a)=q$
- $p \rightarrow \epsilon$ if $p \in F$

We must prove that

- $p \Rightarrow^{*} w q$ iff $\hat{\delta}(p, w)=q$ and
- $p \Rightarrow^{*} w$ iff $\hat{\delta}(p, w) \in F$.

Then, in particular $w \in \mathcal{L}(G)$ iff $w \in \mathcal{L}(D)$.

Regular Languages and Context-Free Languages

We prove by induction on $|w|$ that

- $p \Rightarrow^{*} w q$ iff $\hat{\delta}(p, w)=q$ and
- $p \Rightarrow^{*} w$ iff $\hat{\delta}(p, w) \in F$.

Base case: If $|w|=0$ then $w=\epsilon$.
Given the rules in the grammar, $p \Rightarrow^{*} q$ only when $p=q$ and $p \Rightarrow^{*} \epsilon$ only when $p \rightarrow \epsilon$.
We have $\hat{\delta}(p, \epsilon)=p$ by definition of $\hat{\delta}$ and $p \in F$ by the way we defined the grammar.

Inductive step: Suppose $|w|=n+1$, then $w=a v$.
Then $\hat{\delta}(p, a v)=\hat{\delta}(\delta(p, a), v)$ with $|v|=n$.
By IH $\delta(p, a) \Rightarrow^{*} v q$ iff $\hat{\delta}(\delta(p, a), v)=q$.
By construction we have a rule $p \rightarrow a \delta(p, a)$.
Then $p \Rightarrow a \delta(p, a) \Rightarrow^{*} a v q$ iff $\hat{\delta}(p, a v)=\hat{\delta}(\delta(p, a), v)=q$.
By IH $\delta(p, a) \Rightarrow^{*} v$ iff $\hat{\delta}(\delta(p, a), v) \in F$.
Now $p \Rightarrow a \delta(p, a) \Rightarrow^{*} a v$ iff $\hat{\delta}(p, a v)=\hat{\delta}(\delta(p, a), v) \in F$.

Chomsky Hierarchy

This hierarchy of grammars was described by Noam Chomsky in 1956:

> Type 0: Unrestricted grammars
> Rules are of the form $\alpha \rightarrow \beta, \alpha$ must be non-empty.
> They generate exactly all languages that can be recognised by a Turing machine;

Type 1: Context-sensitive grammars
 Rules are of the form $\alpha A \beta \rightarrow \alpha \gamma \beta$.
 α and β may be empty, but γ must be non-empty;

Type 2: Context-free grammars
Rules are of the form $A \rightarrow \alpha, \alpha$ can be empty.
Used to produce the syntax of most programming languages;
Type 3: Regular grammars
Rules are of the form $A \rightarrow B a, A \rightarrow a B$ or $A \rightarrow \epsilon$.
We have that Type $3 \subset$ Type $2 \subset$ Type $1 \subset$ Type 0 .

Generating, Reachable, Useful and Useless Symbols

Let $G=(V, T, \mathcal{R}, S)$ be a CFG.
Let $X \in V \cup T$ and let $\alpha, \beta \in(V \cup T)^{*}$.

Definition: X is reachable if $S \Rightarrow^{*} \alpha X \beta$.
(This is similar to accessible states in FA.)
Definition: X is generating if $X \Rightarrow^{*} w$ for some $w \in T^{*}$.

Definition: The symbol X is useful if $S \Rightarrow^{*} \alpha X \beta \Rightarrow^{*} w$ for some $w \in T^{*}$. Note: A symbol that is useful should be generating and reachable.

Definition: X is useless iff it is not useful.

We shall "simplify" the grammars by eliminating useless symbols.

Computing the Generating Symbols

Let $G=(V, T, \mathcal{R}, S)$ be a CFG.

The following inductive procedure computes the generating symbols of G :
Base Case: All elements of T are generating;
Inductive Step: If a production $A \rightarrow \alpha$ is such that all symbols of α are known to be generating, then A is also generating. Observe that α could be ϵ.
(The inductive step is to be applied until no new symbols are found generating.)

Theorem: The procedure above finds all and only the generating symbols of a grammar.

Proof: See Theorem 7.4 in the book.

Example: Generating Symbols

Consider the grammar over $\{a\}$ given by the rules:

$$
\begin{aligned}
& S \rightarrow a S|W| U \\
& W \rightarrow a W \\
& U \rightarrow a \\
& V \rightarrow a a
\end{aligned}
$$

a is generating.
U and V are generating since $U \rightarrow a$ and $V \rightarrow a a$.
S is generating since $S \rightarrow U$.
No other symbol is found generating so W is not generating.

After eliminating the non-generating symbols and their productions we get

$$
S \rightarrow a S \mid U \quad U \rightarrow a \quad V \rightarrow a a
$$

Computing the Reachable Symbols

Let $G=(V, T, \mathcal{R}, S)$ be a CFG.

The following inductive procedure computes the reachable symbols of G :
Base Case: The start variable S is reachable;
Inductive Step: If A is reachable and we have a production $A \rightarrow \alpha$ then all symbols in α are reachable.
(The inductive step is to be applied until no new symbols are found reachable.)

Theorem: The procedure above finds all and only the reachable symbols of a grammar.

Proof: See Theorem 7.6 in the book.

Example: Reachable Symbols

Consider the grammar given by the rules:

$$
\begin{array}{ll}
S \rightarrow a B \mid B C & C \rightarrow b \\
A \rightarrow a A|c| a D b & D \rightarrow B \\
B \rightarrow D B \mid C &
\end{array}
$$

S is reachable.
Hence a, B and C are reachable.
Then b and D are reachable.
No other symbol are found reachable so A and c are not reachable.

After eliminating the non-reachable symbols and their productions we get

$$
\begin{array}{ll}
S \rightarrow a B \mid B C & C \rightarrow b \\
B \rightarrow D B \mid C & D \rightarrow B
\end{array}
$$

Eliminating Useless Symbols

It is important in which order we check generating and reachable symbols!

Example: Consider the following grammar

$$
S \rightarrow A B \mid a \quad A \rightarrow b
$$

If we first check for generating symbols and then for reachability we get

$$
S \rightarrow a
$$

If we first check for reachability and then for generating we get

$$
S \rightarrow a \quad A \rightarrow b
$$

Eliminating Useless Symbols

Theorem: Let $G=(V, T, \mathcal{R}, S)$ be a CFG and let $\mathcal{L}(G) \neq \emptyset$. Let $G^{\prime}=\left(V^{\prime}, T^{\prime}, \mathcal{R}^{\prime}, S\right)$ be constructed as follows:

- First, eliminate all non-generating symbols and all productions involving one or more of those symbols;
(2) Then, eliminate all non-reachable symbols and all productions involving one or more of those symbols.

Then G^{\prime} has no useless symbols and $\mathcal{L}(G)=\mathcal{L}\left(G^{\prime}\right)$.

Proof: See Theorem 7.2 in the book.

Example: Eliminating Useless Symbols

Consider the grammar given by the rules:

$$
\begin{array}{ll}
S \rightarrow g A e|a Y B| C Y & A \\
\rightarrow & \rightarrow b B Y \mid o o C \\
B \rightarrow d d \mid D & C
\end{array} \rightarrow j V B|g|
$$

After eliminating non-generating symbols:

$$
\begin{array}{lllll}
S \rightarrow g A e & A & \rightarrow o o C \\
B \rightarrow d d \mid D & C & \rightarrow g I \\
D & \rightarrow n & U & \rightarrow & k W \\
& W & \rightarrow c
\end{array}
$$

After eliminating non-reachable symbols:

$$
S \rightarrow g A e \quad A \rightarrow o \circ C \quad C \rightarrow g l
$$

What is the language generated by the grammar?

Nullable Variables

Definition: A variable A is nullable if $A \Rightarrow^{*} \epsilon$.
Note: Observe that only variables are nullable!

Let $G=(V, T, \mathcal{R}, S)$ be a CFG.
The following inductive procedure computes the nullable variables of G :
Base Case: If $A \rightarrow \epsilon$ is a production then A is nullable;
Inductive Step: If $B \rightarrow X_{1} X_{2} \ldots X_{k}$ is a production and all the X_{i} are nullable then B is also nullable.
(The inductive step is to be applied until no new symbols are found nullable.)

Theorem: The procedure above finds all and only the nullable variables of a grammar.

Proof: See Theorem 7.7 in the book.

Eliminating ϵ-Productions

Definition: An ϵ-production is a production of the form $A \rightarrow \epsilon$.

Let $G=(V, T, \mathcal{R}, S)$ be a CFG.
The following procedure eliminates the ϵ-production of G :
(3) Determine all nullable variables of G;
(2) Build \mathcal{P} with all the productions of \mathcal{R} plus a rule $A \rightarrow \alpha \beta$ whenever we have $A \rightarrow \alpha B \beta$ and B is nullable.
Note: If $A \rightarrow X_{1} X_{2} \ldots X_{k}$ and all X_{i} are nullable, we do not include the case where all the X_{i} are absent;
(3) Construct $G^{\prime}=\left(V, T, \mathcal{R}^{\prime}, S\right)$ where \mathcal{R}^{\prime} contains all the productions in \mathcal{P} except for the ϵ-productions.

Theorem: The grammar G^{\prime} constructed from the grammar G as above is such that $\mathcal{L}\left(G^{\prime}\right)=\mathcal{L}(G)-\{\epsilon\}$.

Proof: See Theorem 7.9 in the book.

Example: Eliminating ϵ-Productions

Example: Consider the grammar given by the rules:

$$
S \rightarrow a S b|S S| \epsilon
$$

By eliminating ϵ-productions we obtain

$$
S \rightarrow a b|a S b| S \mid S S
$$

Example: Consider the grammar given by the rules:

$$
S \rightarrow A B \quad A \rightarrow a A A|\epsilon \quad B \rightarrow b B B| \epsilon
$$

By eliminating ϵ-productions we obtain

$$
S \rightarrow A|B| A B \quad A \rightarrow a|a A| a A A \quad B \rightarrow b|b B| b B B
$$

Eliminating Unit Productions

Definition: A unit production is a production of the form $A \rightarrow B$.
(This is similar to ϵ-transitions in a ϵ-NFA.)

Let $G=(V, T, \mathcal{R}, S)$ be a CFG.
The following procedure eliminates the unit production of G :
(1) Build \mathcal{P} with all the productions of \mathcal{R} plus a rule $A \rightarrow \alpha$ whenever we have $A \rightarrow B$ and $B \rightarrow \alpha$;
(2) Construct $G^{\prime}=\left(V, T, \mathcal{R}^{\prime}, S\right)$ where \mathcal{R}^{\prime} contains all the productions in \mathcal{P} except for the unit production.

Theorem: The grammar G^{\prime} constructed from the grammar G as above is such that $\mathcal{L}\left(G^{\prime}\right)=\mathcal{L}(G)$.

Proof: See Theorem 7.13 in the book.

Example: Eliminating Unit Productions

Consider the grammar given by the rules:

$$
\begin{array}{ll}
S \rightarrow C B h \mid D & A \\
B \rightarrow \text { aaC } \\
B \rightarrow S f \mid g g g & C \rightarrow c A|d| C \\
D \rightarrow E \mid S A B C & E
\end{array} \rightarrow b e
$$

By eliminating unit productions we obtain:

$$
\begin{array}{ll}
S \rightarrow C B h|b e| S A B C & A \rightarrow a a C \\
B \rightarrow S f \mid g g g & C \rightarrow c A \mid d \\
D \rightarrow b e \mid S A B C & E \rightarrow b e
\end{array}
$$

Simplification of a Grammar

Theorem: Let $G=(V, T, \mathcal{R}, S)$ be a CFG whose language contains at least one string other than ϵ. If we construct G^{\prime} by
© First, eliminating ϵ-productions;
(2) Then, eliminating unit productions;

- Finally, eliminating useless symbols;
using the procedures shown before then $\mathcal{L}\left(G^{\prime}\right)=\mathcal{L}(G)-\{\epsilon\}$.
In addition, G^{\prime} contains no ϵ-productions, no unit productions and no useless symbols.

Proof: See Theorem 7.14 in the book.

Note: It is important to apply the steps in this order!

Chomsky Normal Form

Definition: A CFG is in Chomsky Normal Form (CNF) if G has no useless symbols and all the productions are of the form $A \rightarrow B C$ or $A \rightarrow a$.

Note: Observe that a CFG that is in CNF has no unit or ϵ-productions!

Theorem: For any CFG G whose language contains at least one string other than ϵ, there is a CFG G^{\prime} that is in Chomsky Normal Form and such that $\mathcal{L}\left(G^{\prime}\right)=\mathcal{L}(G)-\{\epsilon\}$.

Proof: See Theorem 7.16 in the book.

Constructing a Chomsky Normal Form

Let us assume G has no ϵ - or unit productions and no useless symbols.
Then every production is of the form $A \rightarrow a$ or $A \rightarrow X_{1} X_{2} \ldots X_{k}$ for $k>1$.

If X_{i} is a terminal introduce a new variable A_{i} and a new rule $A_{i} \rightarrow X_{i}$ (if no such rule exists for X_{i} with a variable that has no other rules).

Use A_{i} in place of X_{i} in any rule whose body has length >1.

Now, all rules are of the form $B \rightarrow b$ or $B \rightarrow C_{1} C_{2} \ldots C_{k}$ with all C_{j} variables.

Introduce $k-2$ new variables and break each rule $B \rightarrow C_{1} C_{2} \ldots C_{k}$ as

$$
B \rightarrow C_{1} D_{1} \quad D_{1} \rightarrow C_{2} D_{2} \quad \cdots \quad D_{k-2} \rightarrow C_{k-1} C_{k}
$$

Example: Chomsky Normal Form

Example: Consider the grammar given by the rules:

$$
S \rightarrow a S b|S S| a b
$$

We first obtain

$$
S \rightarrow A S B|S S| A B \quad A \rightarrow a \quad B \rightarrow b
$$

Then we build a grammar in Chomsky Normal Form

$$
\begin{array}{ll}
S \rightarrow A C|S S| A B & A \rightarrow a \\
C \rightarrow S B & B \rightarrow b
\end{array}
$$

Example: Observe however that

$$
S \rightarrow a a \mid a
$$

is NOT equivalent to

$$
S \rightarrow S S \mid a
$$

Instead we need to build

$$
S \rightarrow A A \mid a \quad A \rightarrow a
$$

Pumping Lemma for Left Regular Languages

Let $G=(V, T, \mathcal{R}, S)$ be a left regular grammar and let $n=|V|$.

If $a_{1} a_{2} \ldots a_{m} \in \mathcal{L}(G)$ for $m>n$, then any derivation

$$
S \Rightarrow a_{1} A_{1} \Rightarrow a_{1} a_{2} A_{2} \Rightarrow \ldots \Rightarrow a_{1} \ldots a_{i} A \Rightarrow \ldots \Rightarrow a_{1} \ldots a_{j} A \Rightarrow \ldots \Rightarrow a_{1} \ldots a_{m}
$$

has length m and there is at least one variable A which is used twice.
(Pigeon-hole principle)

If $x=a_{1} \ldots a_{i}, y=a_{i+1} \ldots a_{j}$ and $z=a_{j+1} \ldots a_{m}$, we have $|x y| \leqslant n$ and $x y^{k} z \in \mathcal{L}(G)$ for all k.

Pumping Lemma for Context-Free Languages

Theorem: Let \mathcal{L} be a context-free language.
Then, there exists a constant $n-w h i c h ~ d e p e n d s ~ o n ~ \mathcal{L}$-such that for every $w \in \mathcal{L}$ with $|w| \geqslant n$, it is possible to break w into 5 strings x, u, y, v and z such that $w=x u y v z$ and
(1) $|u y v| \leqslant n$;
(2) $u v \neq \epsilon$, that is, either u or v is not empty;
(3) $\forall k \geqslant 0 . x u^{k} y v^{k} z \in \mathcal{L}$.

Proof: (Sketch)
We can assume that the language is presented by a grammar in Chomsky Normal Form, working with $\mathcal{L}-\{\epsilon\}$.

Observe that parse trees for grammars in CNF have at most 2 children.
Note: If $m+1$ is the height of a parse tree for w, then $|w| \leqslant 2^{m}$.
(Prove this as an exercise!)

Proof Sketch: Pumping Lemma for Context-Free Languages

Let $|V|=m>0$. Take $n=2^{m}$ and w such that $|w| \geqslant 2^{m}$.
Any parse tree for w has a path from root to leave of length at least $m+1$.
Let $A_{0}, A_{1} \ldots, A_{k}$ be the variables in the path. We have $k \geqslant m$.
Then at least 2 of the last $m+1$ variables should be the same, say A_{i} and A_{j}.

Observe figures 7.6 and 7.7 in pages 282-283.

See Theorem 7.18 in the book for the complete proof.

Example: Pumping Lemma for Context-Free Languages

Consider the following grammar:

$$
\begin{array}{lll}
S \rightarrow A C \mid A B & A & \rightarrow a \\
B \rightarrow b & C \rightarrow S B
\end{array}
$$

Consider the derivation for the string $a a a a b b b b$

$$
\begin{aligned}
& S \Rightarrow A C \Rightarrow a C \Rightarrow a S B \Rightarrow a A C B \Rightarrow \text { aaCB } \Rightarrow \text { aaS } B B \Rightarrow a a A B B B \\
& \Rightarrow \text { aaa } B B B \Rightarrow \text { aaab } B B \Rightarrow \text { aaabb } B \Rightarrow \text { aaabbb }
\end{aligned}
$$

Consider the parse tree and the last 2 occurrences of the symbol S.
Then we have $x=a, u=a, y=a b, v=b, z=b$.

Example: Pumping Lemma for Context-Free Languages

Lemma: The language $\mathcal{L}=\left\{a^{m} b^{m} c^{m} \mid m>0\right\}$ is not context-free.

Proof: Let us assume \mathcal{L} is context-free.
Let n be the constant stated by the Pumping lemma.
Let $w=a^{n} b^{n} c^{n}$; we have that $|w| \geqslant n$.
By the PL we know that $w=x u y v z$ such that

$$
|u y v| \leqslant n \quad u v \neq \epsilon \quad \forall k \geqslant 0 . x u^{k} y v^{k} z \in \mathcal{L}
$$

Since $|u y v| \leqslant n$ there is one letter $d \in\{a, b, c\}$ that does not occur in uyv.
Since $u v \neq \epsilon$ there is another letter $e \in\{a, b, c\}, e \neq d$ that does occur in $u v$.
Then e has more occurrences than d in $x u^{2} y v^{2} z$ and this contradicts the fact that $x u^{2} y v^{2} z \in \mathcal{L}$.

Overview of Next Lecture

Sections 7.3-7.4:

- Closure properties of CFL;
- Decision properties of CFL;
- Guest lecture by Andreas Abel: Programming Language Technology: Putting Formal Languages to Work.

