Finite Automata Theory and Formal Languages TMV027/DIT321- LP4 2017

Lecture 11
Ana Bove

April 27th 2017

Overview of today's lecture:

- Context-free grammars;
- Derivations;
- Parse trees;
- Proofs in grammars.

Recap: Regular Languages

- Decision properties of RL:
- Is it empty?
- Does it contain this word?
- Contains ϵ, contains at most ϵ, is infinite?
- Equivalence of languages using table-filling algorithm;
- Minimisation of DFA using table-filling algorithm.

Context-free Grammars

We have seen that not all languages are regular.

Context-free grammars (CFG) define the so called context-free languages.
They have been developed in the mid-1950s by Noam Chomsky.

We will see (next lecture) that
regular languages \subset context-free languages

CFG play an important role in the description and design of programming languages and compilers, for example, for the implementation of parsers.

Example: Palindromes

Let us consider the language \mathcal{L} of palindromes over $\Sigma=\{0,1\}$.
That is, $\mathcal{L}=\left\{w \in \Sigma^{*} \mid w=\operatorname{rev}(w)\right\}$.
Example of palindromes over Σ are $\epsilon, 0110,00011000,010$.

We can use the Pumping Lemma for RL to show that \mathcal{L} is not regular.
How can \mathcal{L} be defined?

We have that (inductive definition):

- $\epsilon, 0$ and 1 are in \mathcal{L};
- if $w \in \mathcal{L}$ then $0 w 0$ and $1 w 1$ are also in \mathcal{L}.

Example: CFG for Palindromes

$$
\begin{aligned}
& P \rightarrow \epsilon \\
& P \rightarrow 0 \\
& P \rightarrow 1 \\
& P \rightarrow 0 P 0 \\
& P \rightarrow 1 P 1
\end{aligned}
$$

The variable P represents the set of strings that are palindromes.
The rules say how to construct the strings in the language.

Example: CFG for Simple Expressions

We can define several sets in a grammar.

Example: Here we define 2 sets: those representing simple numerical expressions (denoted by E) and those representing Boolean expressions (denoted by B).

$$
\begin{aligned}
& E \rightarrow 0 \\
& E \rightarrow 1 \\
& E \rightarrow E+E \\
& E \rightarrow \text { if } B \text { then } E \text { else } E \\
& B \rightarrow \text { True } \\
& B \rightarrow E \times E \\
& B \rightarrow E<E \\
& B \rightarrow E=E
\end{aligned}
$$

Compact Notation

We can group all productions defining elements in a certain set.

Example: Palindromes can be defined as

$$
P \rightarrow \epsilon|0| 1|0 P 0| 1 P 1
$$

Example: The expressions can be defined as

$$
\begin{aligned}
& E \rightarrow 0|1| E+E \mid \text { if } B \text { then } E \text { else } E \\
& B \rightarrow \text { True } \mid \text { False }|E<E| E==E
\end{aligned}
$$

Context-Free Grammars

Definition: A context-free grammar is a 4-tuple $G=(V, T, \mathcal{R}, S)$ where:

- V is a finite set of variables or non-terminals: each variable represents a language or set of strings;
- T is a finite set of symbols or terminals: think of T as the alphabet of the language we are defining;
- \mathcal{R} is a finite set of rules or productions which recursively define the language. Each production consists of:
- A variable being defined in the production;
- The symbol " \rightarrow ";
- A string of 0 or more terminals and variables called the body of the production;
- S is the start variable and represents the language we are defining; other variables define the auxiliary classes needed to define our language.

Example: $\mathrm{C}++$ Compound Statements

A context free grammar for statements:

$$
(\{S, L C, C, E, I d, L L o D, L, D\},\{a, \ldots, A, \ldots, 0, \ldots,(,), \ldots\}, \mathcal{R}, S)
$$

with \mathcal{R} as follows:

$$
\begin{array}{lll}
S & \rightarrow & \{L C\} \\
L C & \rightarrow & \epsilon \mid C L C \\
C & \rightarrow & S \mid \text { if }(E) C \mid \text { if }(E) C \text { else } C \mid \\
& \text { while }(E) C \mid \text { do } C \text { while }(E) \mid \text { for }(C E ; E) C \mid \\
& \text { case } E: C \mid \text { switch }(E) C \mid \text { return } E ; \mid \text { goto Id; } \\
& & \text { break; } \mid \text { continue; } \\
E & \rightarrow & \ldots \\
\text { Id } & \rightarrow L L L o D \\
L L o D & \rightarrow & L L L o D|D L L o D| \epsilon \\
L & \rightarrow & A|B| \ldots|Z| a|b| \ldots \mid z \\
D & \rightarrow & 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{array}
$$

Notation for Context-Free Grammars

We use the following convention when working with CFG:

- $a, b, c, \ldots, 0,1, \ldots,(),,+, \%, \ldots$ are terminal symbols;
- A, B, C, \ldots are variables (non-terminals);
- w, x, y, z, \ldots are strings of terminals;
- X, Y, \ldots are either a terminal or a variable;
- $\alpha, \beta, \gamma, \ldots$ are strings of terminals and/or variables; In particular, they can also represent strings with only variables.

Working with Grammars

We use the productions of a CFG to infer that a string w is in the language of a given variable.

Example: Let us see if 0110110 is a palindrome.

We can do this in 2 (equivalent) ways:
Recursive inference: From body to head.
(Similar to how we would construct the element in the inductive set.)

1) 0 is palindrome by rule $P \rightarrow 0$
2) 101 is palindrome using \quad 1) and rule $P \rightarrow 1 P 1$
3) 11011 is palindrome using \quad 2) and rule $P \rightarrow 1 P 1$
4) 0110110 is palindrome using $\quad 3$) and rule $P \rightarrow 0 P 0$

Derivation: From head to body using the rules in the opposite order.
Notation: \Rightarrow
$P \Rightarrow 0 P 0 \Rightarrow 01 P 10 \Rightarrow 011 P 110 \Rightarrow 0110110$
April 27th 2017, Lecture 11
Formal Definition of a Derivation

Let $G=(V, T, \mathcal{R}, S)$ be a CFG.

Definition: Let $A \in V$ and $\alpha, \beta \in(V \cup T)^{*}$. Let $A \rightarrow \gamma \in \mathcal{R}$.
Then $\alpha A \beta \Rightarrow \alpha \gamma \beta$ is one derivation step (alternative $\alpha A \beta \stackrel{G}{\Rightarrow} \alpha \gamma \beta$).

Example: $B \Rightarrow E==E \Rightarrow 0==E \Rightarrow 0==E+E \Rightarrow 0==E+1 \Rightarrow 0==0+1$

Reflexive-transitive Closure of a Derivation

We can define a relation performing zero or more derivation steps.

Definition: ${ }_{G}$ The reflexive-transitive closure of \Rightarrow is the relation \Rightarrow^{*} (alternative $\stackrel{{ }^{G}}{ }{ }^{*}$) defined as follows:

$$
\overline{\alpha \Rightarrow^{*} \alpha} \quad \frac{\alpha \Rightarrow^{*} \beta \quad \beta \Rightarrow \gamma}{\alpha \Rightarrow^{*} \gamma}
$$

Example: $B \Rightarrow^{*} 0=0+1$.

Note: We denote $A \Rightarrow^{n} \alpha$ when α is derived from A in n steps.

Leftmost and Rightmost Derivations

At every derivation step we can choose to replace any variable by the right-hand side of one of its productions.

Two particular derivations are:

Leftmost derivation: Notations: $\stackrel{\operatorname{lm}}{\Rightarrow}$ and $\stackrel{I m}{\Rightarrow}$.
At each step we choose to replace the leftmost variable.
Example: $B \stackrel{l m}{\Rightarrow} 0=0+1$

$$
B \stackrel{\operatorname{lm}}{\Rightarrow} E=E \stackrel{\operatorname{lm}}{\Rightarrow} 0=E \stackrel{\operatorname{lm}}{\Rightarrow} 0=E+E \stackrel{\operatorname{lm}}{\Rightarrow} 0==0+E \stackrel{\operatorname{lm}}{\Rightarrow} 0==0+1
$$

Rightmost derivation: Notations: $\stackrel{r m}{\Rightarrow}$ and $\stackrel{r m}{\Rightarrow}$.
At each step we choose to replace the rightmost variable.
Example: $B \stackrel{r m}{\Rightarrow} 0=0+1$

$$
B \stackrel{r m}{\Rightarrow} E=E E \stackrel{r m}{\Rightarrow} E==E+E \stackrel{r m}{\Rightarrow} E=E+1 \stackrel{r m}{\Rightarrow} E==0+1 \stackrel{r m}{\Rightarrow} 0==0+1
$$

Sentential Forms

Derivations from the start variable have an special role.

Definition: Let $G=(V, T, \mathcal{R}, S)$ be a CFG and let $\alpha \in(V \cup T)^{*}$. α is called a sentential form if $S \Rightarrow^{*} \alpha$.

We say left sentential form if $S \Rightarrow^{\text {Im }} \alpha$ or right sentential form if $S \stackrel{r m}{\Rightarrow} \alpha$.

Example: $010 P 010$ is a sentential form since

$$
P \Rightarrow 0 P 0 \Rightarrow 01 P 10 \Rightarrow 010 P 010
$$

Language of a Grammar

Definition: Let $G=(V, T, \mathcal{R}, S)$ be a CFG.
The language of G, denoted $\mathcal{L}(G)$ is the set of terminal strings that can be derived from the start variable.

$$
\mathcal{L}(G)=\left\{w \in T^{*} \mid S \stackrel{G}{*}^{*} w\right\}
$$

Definition: If \mathcal{L} is the language of a certain context-free grammar, then \mathcal{L} is said to be a context-free language.

Examples of Context Free Grammars

Example: Construct a CFG generating $\left\{0^{i} 1^{j} \mid j \geqslant i \geqslant 0\right\}$.

$$
S \rightarrow \epsilon|0 S 1| S 1
$$

Example: Construct a CFG generating $\left\{w \in\{0,1\}^{*} \mid \#_{0}(w)=\#_{1}(w)\right\}$.

$$
S \rightarrow \epsilon|0 S 1| 1 S 0 \mid S S
$$

Example: Construct a grammar for the following language:

$$
\begin{aligned}
\left\{a^{n} b^{n} c^{m} d^{m} \mid n, m\right. & \geqslant 1\} \cup\left\{a^{n} b^{m} c^{m} d^{n} \mid n, m \geqslant 1\right\} \\
S & \rightarrow A B \mid C \\
A & \rightarrow a A b \mid a b \\
B & \rightarrow c B d \mid c d \\
C & \rightarrow a C d \mid a D d \\
D & \rightarrow b D c \mid b c
\end{aligned}
$$

Observations on Derivations

Observe: If we have $A \Rightarrow^{*} \gamma$ then we also have $\alpha A \beta \Rightarrow^{*} \alpha \gamma \beta$.

The same sequence of steps that took us from A to γ will also take us from $\alpha A \beta$ to $\alpha \gamma \beta$.

Example: We have $E \Rightarrow{ }^{*} 0+1$ since $E \Rightarrow E+E \Rightarrow 0+E \Rightarrow 0+1$.
This same derivation justifies $E=E=\Rightarrow^{*} E==0+1$ since

$$
E=E \Rightarrow E==E+E \Rightarrow E==0+E \Rightarrow E==0+1
$$

Observations on Derivations

Observe: If we have $A \Rightarrow X_{1} X_{2} \ldots X_{k} \Rightarrow^{*} w$, then we can break w into pieces $w_{1}, w_{2}, \ldots, w_{k}$ such that $X_{i} \Rightarrow^{*} w_{i}$. If X_{i} is a terminal then $X_{i}=w_{i}$.

This can be showed by proving (by induction on the length of the derivation) that if $X_{1} X_{2} \ldots X_{k} \Rightarrow^{*} \alpha$ then all positions of α that come from expansion of X_{i} are to the left of all positions that come from the expansion of X_{j} if $i<j$.

To obtain $X_{i} \Rightarrow^{*} w_{i}$ from $A \Rightarrow^{*} w$ we need to remove all positions of the sentential form (see next slide) that are to the left and to the right of all the positions derived from X_{i}, and all steps not relevant for the derivation of w_{i} from X_{i}.

Example: Let $B \Rightarrow E==E \Rightarrow E==E+E \Rightarrow E==E+0 \Rightarrow$ $E=E+E+0 \Rightarrow E==0+E+0 \Rightarrow 1==0+E+0 \Rightarrow 1==0+1+0$.

The derivation from the middle E in the sentential form $E=E E+E$ is $E \Rightarrow E+E \Rightarrow 0+E \Rightarrow 0+1$.

Parse Trees

Parse trees are a way to represent derivations.
A parse tree reflects the internal structure of a word of the language.

Using parse trees it becomes very clear which is the variable that was replaced at each step.

In addition, it becomes clear which terminal symbols where generated/derived form a particular variable.

Parse trees are very important in compiler theory.

In a compiler, a parser takes the source code into its abstract tree, which is an abstract version of the parse tree.

This parse tree is the structure of the program.

Parse Trees

Definition: Let $G=(V, T, \mathcal{R}, S)$ be a CFG.
The parse trees for G are trees with the following conditions:

- Nodes are labelled with a variable;
- Leaves are either variables, terminals or ϵ;
- If a node is labelled A and it has children labelled $X_{1}, X_{2}, \ldots, X_{n}$ respectively from left to right, then it must exist in \mathcal{R} a production of the form $A \rightarrow X_{1} X_{2} \ldots X_{n}$.

Note: If a leaf is ϵ it should be the only child of its parent A and there should be a production $A \rightarrow \epsilon$.

Note: Of particular importance are the parse trees with root S.

Exercise: Construct the parse trees for $0==E+1$ and for 001100 .

Height of a Parse Tree

Definition: The height of a parse tree is the maximum length of a path from the root of the tree to one of its leaves.

Observe: We count the edges in the tree, and not the number of nodes and the leaf in the path.

Example: The height of the parse tree for $0==E+1$ is 3 and the one for 001100 is 4 .

Yield of a Parse Tree

Definition: A yield of a parse tree is the string resulted from concatenating all the leaves of the tree from left to right.

Observations:

- We will show than the yield of a tree is a string derived from the root of the tree;
- Of particular importance are the yields that consist of only terminals; that is, the leaves are either terminals or ϵ;
- When, in addition, the root is S then we have a parse tree for a string in the language of the grammar;
- We will see that yields can be used to describe the language of a grammar.

Context-Free Grammars and Inductive Definitions

Each CFG can be seen as an inductive definition (see slide 3).

Example: Consider the grammar for palindromes in slide 4 (and 6).
It can be seen as the following definition:
Base Cases: - The empty string is a palindrome;

- 0 and 1 are palindromes.

Inductive Steps: If w is a palindrome, then so are $0 w 0$ and $1 w 1$.

A natural way then to do proofs on context-free languages is to follow this inductive structure.

Proofs About a Grammar

When we want to prove something about a grammar we usually need to prove an statement for each of the variables in the grammar.
(Compare this with proofs about FA where we needed statements for each state.)

Proofs about grammars are in general done by:

- (course-of-value) induction on the length of a certain string of the language;
- (course-of-value) induction on the length (number of steps) of a derivation of a certain string;
- induction on the structure of the strings in the language;
- (course-of-value) induction on the height of the parse tree.

Example: Proof About a Grammar

Exercise: Consider the grammar $S \rightarrow \epsilon|0 S 1| 1 S 0 \mid S S$.
Prove that if $S \Rightarrow^{*} w$ then $\#_{0}(w)=\#_{1}(w)$.

Proof: Our $P(n)$: if $S \Rightarrow^{n} w$ then $\#_{0}(w)=\#_{1}(w)$.
Proof by course-of-value induction on the length of the derivation.
Base cases: If length is 1 then we have $S \Rightarrow \epsilon$ and $\#_{0}(\epsilon)=\#_{1}(\epsilon)$ holds.
Inductive Steps: Our IH is that $\forall i .1 \leqslant i \leqslant n$, if $S \Rightarrow^{i} w^{\prime}$ then $\#_{0}\left(w^{\prime}\right)=\#_{1}\left(w^{\prime}\right)$.
Let $S \Rightarrow^{n+1} w$ with $n>0$. Then we have 3 cases:

- $S \Rightarrow 0 S 1 \Rightarrow^{n} w$: Here $w=0 w_{1} 1$ with $S \Rightarrow^{n} w_{1}$.

By IH \#0 $\left(w_{1}\right)=\#_{1}\left(w_{1}\right)$ hence
$\#_{0}(w)=\#_{0}\left(0 w_{1} 1\right)=1+\#_{0}\left(w_{1}\right)=1+\#_{1}\left(w_{1}\right)=\#_{1}(w) ;$

- $S \Rightarrow 1 S 0 \Rightarrow^{n} 1 w_{1} 0$: Similar ...
- $S \Rightarrow S S \Rightarrow^{n} w$: Here $w=w_{1} w_{2}$ with $S \Rightarrow^{i} w_{1}$ and $S \Rightarrow^{j} w_{2}$ for $i, j<n$.

By IH $\#_{0}\left(w_{1}\right)=\#_{1}\left(w_{1}\right)$ and $\#_{0}\left(w_{2}\right)=\#_{1}\left(w_{2}\right)$.
Hence $\#_{0}(w)=\#_{0}\left(w_{1}\right)+\#_{0}\left(w_{2}\right)=\#_{1}\left(w_{1}\right)+\#_{1}\left(w_{2}\right)=\#_{1}(w)$.

Example: Proof About a Grammar

Lemma: Let G be the grammar presented on slide 4.
Then $\mathcal{L}(G)$ is the set of palindromes over $\{0,1\}$.

Proof: We will prove that if $w \in\{0,1\}^{*}$, then $w \in \mathcal{L}(G)$ iff $w=\operatorname{rev}(w)$.
If) Our $P(n)$: if w is a palindrome and $|w|=n$ then $w \in \mathcal{L}(G)$, that is, $P \Rightarrow^{*} w$. Proof by course-of-value induction on n (that is, $|w|$).

Base cases: If $|w|=0$ or $|w|=1$ then w is $\epsilon, 0$ or 1 .
We have productions $P \rightarrow \epsilon, P \rightarrow 0$ and $P \rightarrow 1$.
Then $P \Rightarrow^{*} w$ so $w \in \mathcal{L}(G)$.
Inductive Steps: Assume w such that $|w|>1$.
Our IH is that the property holds for any w^{\prime} such that $\left|w^{\prime}\right|<|w|$.
Since $w=\operatorname{rev}(w)$ then $w=0 w^{\prime} 0$ or $w=1 w^{\prime} 1$, and $w^{\prime}=\operatorname{rev}\left(w^{\prime}\right)$.
$\left|w^{\prime}\right|<|w|$ so by IH then $P \Rightarrow^{*} w^{\prime}$.
If $w=0 w^{\prime} 0$ we have $P \Rightarrow 0 P 0 \Rightarrow^{*} 0 w^{\prime} 0=w$ so $w \in \mathcal{L}(G)$.
Similarly if $w=1 w^{\prime} 1$.

Example: Proof About a Grammar (Cont.)

Only-if) We prove that if $w \in \mathcal{L}(G)$ then w is a palindrome.
Our $P(n)$: if $P \Rightarrow^{n} w$ then $w=\operatorname{rev}(w)$.
Proof by mathematical induction on n (length of the derivation of w).
Base case: If the derivation is in one step then we should have $P \Rightarrow \epsilon, P \Rightarrow 0$ and $P \Rightarrow 1$. In all cases we have $w=\operatorname{rev}(w)$.

Inductive Step: Our IH is that if $P \Rightarrow^{n} w^{\prime}$ with $n>0$ then $w^{\prime}=\operatorname{rev}\left(w^{\prime}\right)$.
Assume $P \Rightarrow^{n+1} w$. The we have 2 cases:

- $P \Rightarrow 0 P 0 \Rightarrow{ }^{n} 0 w^{\prime} 0=w$;
- $P \Rightarrow 1 P 1 \Rightarrow^{n} 1 w^{\prime} 1=w$.

Observe that in both cases $P \Rightarrow^{n} w^{\prime}$ with $n>0$.
Hence by $\mathrm{IH} w^{\prime}=\operatorname{rev}\left(w^{\prime}\right)$ so $w=\operatorname{rev}(w)$.

Overview of next Week

Mon 1	Tue 2	Wed 3	Thu 4	Fri 5
	10-12 EL43 Individual help			
			Lec 13-15 HB3 CFG.	
		15-17 EL41 Consultation		

Assignment 4: RL.
Deadline: Wednesday May 3rd 23:59.

Overview of Next Lecture

Sections 5.2.3-5.2.6, 5.4:

- Inference, derivations and parse trees;
- Ambiguity in grammars;
- Regular grammars.

