
Finite Automata Theory and Formal Languages

TMV027/DIT321– LP4 2017

Lecture 1
Ana Bove

March 20th 2017

Overview of today’s lecture:

Overview of the course;

Course organisation.

Automaton

Dictionary definition:

Main Entry: au·tom·a·ton
Function: noun

Inflected Form(s): plural au·tom·atons or au·tom·a·ta
Etymology: Latin, from Greek, neuter of automatos

Date: 1645

1 : a mechanism that is relatively self-operating;

especially : robot

2 : a machine or control mechanism designed to follow

automatically a predetermined sequence of operations or

respond to encoded instructions

3 : an individual who acts in a mechanical fashion

March 20th 2017, Lecture 1 TMV027/DIT321 1/34

Automata: Applications

Models for ...

Lexical analyser in a compiler;

Software for designing circuits;

Software for finding patterns in large bodies of text such as collection
of web pages;

Software for verifying systems with a finite number of different states
such as protocols;

Real machines like vending machines, telephones, street lights, ...;

Application in linguistic, building of large dictionary, spell programs,
search;

Application in genetics, regular pattern in the language of protein.

March 20th 2017, Lecture 1 TMV027/DIT321 2/34

Example: on/off-switch

A very simple finite automaton:

OFF ON

Push

Push

States represented by “circles”.

One starting state, indicated with an arrow into it.

Labelled arcs between states represent observable events.

Sometimes one or more final states, indicated with a double circle.

p

March 20th 2017, Lecture 1 TMV027/DIT321 3/34

Example: Parity Counter

The states of an automaton can be thought of as its memory.

A finite-state automaton has finite memory!

even odd

p0

p0

p1

p1

Two events: p0 and p1.

The machine does nothing on the event p1.
The machine remembers the parity of the number of p0’s.

Correctness: We could prove that the automata is on the state even iff an even number

of p0 were pressed.
March 20th 2017, Lecture 1 TMV027/DIT321 4/34

Example: Vending Machines

A simple vending machine:

p q

5 kr

tea

A more complex vending machine:

p q r

10 kr

tea tea

coffee

5 kr 5 kr

What does it happen if we ask for a tea on p?

March 20th 2017, Lecture 1 TMV027/DIT321 5/34

Example: The Man, the Wolf, the Goat and the Cabbage

A man with a wolf, a goat and a cabbage is on the left bank of a river.

There is a boat large enough to carry the man and only one of the other
three things. The man wish to cross everything to the right bank.

However if the man leaves the wolf and the goat unattended on either
shore, the wolf surely will eat the goat.

Similarly, if the goat and the cabbage are left unattended, the goat will eat
the cabbage.

Problem: Is it possible to cross the river without the goat or cabbage
being eaten?
How many possible solutions the problem has?

Solution: We design an automaton that models the problem with all its
possible transitions, and look for paths between the initial and final state.

March 20th 2017, Lecture 1 TMV027/DIT321 6/34

Solution: The Man, the Wolf, the Goat and the Cabbage

MWGC/

/MWGC

WC/MG

MG

MWC/G
MG

M

C/MWG W/MGC

M

MW

MC

MGC/W MWG/C

MW

MC

MG MG

G/MWC

MG MG

MC

MW

MG/WC

MC

MW

M

M

MG

MG

March 20th 2017, Lecture 1 TMV027/DIT321 7/34

Formal Languages

From Wikipedia:

In mathematics, computer science, and linguistics, a formal

language is a set of strings of symbols that may be

constrained by rules that are specific to it.

The alphabet of a formal language is the set of symbols,

letters, or tokens from which the strings of the language

may be formed; frequently it is required to be finite.

The strings formed from this alphabet are called words, and

the words that belong to a particular formal language are

sometimes called well-formed words or well-formed formulas.

A formal language is often defined by means of a formal

grammar such as a regular grammar or context-free grammar,

also called its formation rule.

March 20th 2017, Lecture 1 TMV027/DIT321 8/34

Example: Formal Representation of Numbers and
Identifiers in a Programming Language

A regular grammar for numbers and identifiers

L → A | B | ... | Z | a | b | ... | z
D → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Nr → D | D Nr
Id → L LLoD
LLoD → L LLoD | D LLoD | ǫ

A regular expression for numbers:

(0+ 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9)+

and for identifiers:

(A+ ...+ Z+ a+ ...+ z)(A + ...+ Z+ a+ ...+ z+ 0+ ...+ 9)∗

March 20th 2017, Lecture 1 TMV027/DIT321 9/34

Example: Very Simple Expressions

A context-free grammar for simple expression:

E → E+E | E−E | E∗E | E/E | (E) | Nr | Id
Nr → · · ·
Id → · · ·

Correctness: We could prove that

Any expression has as many “(” as “)”;

Any expression has 1 more “term” than the number of “operations”;

...

March 20th 2017, Lecture 1 TMV027/DIT321 10/34

More Complex Examples

An equivalent (but better) context-free grammar for simple expression:

E → E+T | E−T | T
T → T∗F | T/F | F
F → (E) | Nr | Id

A context-free grammar for C++ compound statements:

S → {LC}
LC → ǫ | C LC
C → S | if (E) C | if (E) C else C |

while (E) C | do C while (E) | for (C E ;E) C |
case E :C | switch (E) C | return E ; | goto Id ;
break; | continue;

...

March 20th 2017, Lecture 1 TMV027/DIT321 11/34

Overview of the Course

Formal proofs;

Regular languages;

Context-free languages;

Turing machines (as much as time allows).

March 20th 2017, Lecture 1 TMV027/DIT321 12/34

Formal Proofs

Many times you will need to prove that your program/model/grammar/. . .
is “correct” (satisfies a certain specification/property).

In particular, you won’t get a complex program/model/grammar/. . . right if you don’t

understand what is going on.

Different kind of formal proofs:

Deductive proofs;

Proofs by contradiction;

Proofs by counterexamples;

Proofs by (structural) induction.

March 20th 2017, Lecture 1 TMV027/DIT321 13/34

Regular Languages

Finite automata were originally proposed in the 1940’s as models of neural
networks.

Turned out to have many other applications!

In the 1950s, the mathematician Stephen Kleene described these models
using mathematical notation (regular expressions, 1956).

Ken Thompson used the notion of regular expressions introduced by Kleene in the UNIX
system.

(Observe that Kleene’s regular expressions are not really the same as UNIX’s regular

expressions.)

Both formalisms define the regular languages.

March 20th 2017, Lecture 1 TMV027/DIT321 14/34

Context-Free Languages

We can give a bit more power to finite automata by adding a stack that
contains data and obtain a push down automata.

In the mid-1950s Noam Chomsky developed the context-free grammars.

Context-free grammars play a central role in the description and design of
programming languages and compilers.

Both formalisms define the context-free languages.

March 20th 2017, Lecture 1 TMV027/DIT321 15/34

Turing Machine (ca 1936–7)

Simple theoretical device that manipulates symbols contained on a tape.

It is as “powerful” as the computers we know today (in terms of what they can

compute).

It allows the study of decidability: what can or cannot be done by a
computer (halting problem).

Computability vs complexity theory: we should distinguish between what
can or cannot be done by a computer, and the inherent difficulty of the
problem (tractable (polynomial)/intractable (NP-hard) problems).

March 20th 2017, Lecture 1 TMV027/DIT321 16/34

Church-Turing Thesis

In the 1930’s there has been quite a lot of work about the nature of
effectively computable (calculable) functions:

Recursive functions by Stephen Kleene (after ideas by Kurt Gödel);

λ-calculus by Alonzo Church;

Turing machines by Alan Turing.

The three models of computation were shown to be equivalent by Church,
Kleene & (John Barkley) Rosser (1934–6) and Turing (1936-7).

The Church-Turing thesis states that if an algorithm (a procedure that
terminates) exists then, there is a Turing machine, a recursively-definable
function, or a definable λ-function for that algorithm.

March 20th 2017, Lecture 1 TMV027/DIT321 17/34

Learning Outcome of the Course

After completion of this course, the student should be able to:

Explain and manipulate the different concepts in automata theory and formal
languages;

Have a clear understanding about the equivalence between (non-)deterministic
finite automata and regular expressions;

Understand the power and the limitations of regular languages and context-free
languages;

Prove properties of languages, grammars and automata with rigorously formal
mathematical methods;

Design automata, regular expressions and context-free grammars accepting or
generating a certain language;

Describe the language accepted by an automata or generated by a regular
expression or a context-free grammar;

Simplify automata and context-free grammars;

Determine if a certain word belongs to a language;

Define Turing machines performing simple tasks;

Differentiate and manipulate formal descriptions of languages, automata and
grammars.

March 20th 2017, Lecture 1 TMV027/DIT321 18/34

People and Contact Information

Course Responsible and Examiner:
Ana Bove, bove@chalmers.se

Assistants:
Victor López, lopezv@chalmers.se
Daniel Schoepe, schoepe@chalmers.se
Marco Vassena, vassena@chalmers.se
Andrea Vezzosi, vezzosi@chalmers.se

Course Mailing List: fafl@lists.chalmers.se

Important information related to the course will be sent there.

You will get registered to it next week with your CTH/GU mail address.

The list is moderated.

March 20th 2017, Lecture 1 TMV027/DIT321 19/34

Course Level, Load and Web Page

Level: This course is a bachelor course in year 1–2.

Load: 7.5 pts means ca. 20–25 hours per week!!

Note: It is important to follow the course’s pace in order to pass it!

Web Page: http://www.cse.chalmers.se/edu/course/TMV027

Accessible from CTH “studieportalen” and GU “GUL”.

Check it regularly for news!

March 20th 2017, Lecture 1 TMV027/DIT321 20/34

Literature and Other Material

Main book: Introduction to Automata Theory, Languages, and
Computation, by Hopcroft, Motwani and Ullman. Addison-Wesley.

We will cover chapters 1 to 5, 7 and a bit of chapter 8.

Note: Notation in the book is sometimes different to that used in class.

Online book: Mathematics for Computer Science, by Lehman, Leighton
and Meyer

For recap on discrete math concepts and the part on formal proofs.

Wikipedia: http://en.wikipedia.org/wiki

Youtube: http://www.youtube.com

March 20th 2017, Lecture 1 TMV027/DIT321 21/34

Course Organisation

The course has an introductory part, 7 “modules” and a closing part.

Each module consists of:

Two lectures by Ana;
Two exercises classes with the same content by the assistants;
A consultation time by Ana: in group we discuss whatever you need
help with;
An individual help session by assistants: when you get stuck with a
particular exercise;
An individual assignment.

Note: Check time edit/course web page for details!

Note: You MUST prepare before each lecture in order to follow the course
pace!
March 20th 2017, Lecture 1 TMV027/DIT321 22/34

Solutions to the Exercises

Note: There are NO solutions to exercises!!!

Why?

Expensive to create and maintain good solutions;

Some problems have many possible solutions;

Pedagogically not always good: you learn mostly by doing;

Asking the teachers in case of doubt is a better way to learn;

You need to learn how to solve problems without a solution....
Who will pay you to solve something one already has the solution to?

However:

The book’s web page have some solutions available;

There are plenty of other exercises with their solutions on the web!
March 20th 2017, Lecture 1 TMV027/DIT321 23/34

Online Tools

JFLAP: http://www.jflap.org

Can help you finding a right solution to some problems.

Use the tool wisely: to learn and not just to copy a solution!

Automata tutor: http://automatatutor.com

You can test your knowledge on some exercises here.

You need to create an account and register to the following course:

Course ID: 128FAFL-2
Password: LKO0EKYV

Visit course web page on Useful links!

March 20th 2017, Lecture 1 TMV027/DIT321 24/34

Programming Bits in the Course

The course doesn’t require much programming tasks.

Still

I will present some Haskell programs simulating certain automaton or
implementing an algorithm.

(Code should be easy enough to follow even if you do not know Haskell.)

You are encourage to implement the algorithms to improve your
knowledge and understanding, and to test your solutions!

March 20th 2017, Lecture 1 TMV027/DIT321 25/34

Examination

From VT2013 the course has 2 obligatory parts:

Individual weekly assignments: 1.5pts.

Individual written exam: 6pts, no book or help (but dictionaries)
allowed.
Dates for 2017: May 30th pm and August 16th am.

From VT2015 the final grade is based on the performance on both parts!

Visit course web page on Examination!

March 20th 2017, Lecture 1 TMV027/DIT321 26/34

More on Assignments

To pass the assignment part you need to get at least 50% of the sum
of the points of all the weekly assignments together.

No re-submission possibility.

No need to submit all of them but VERY good if you do!

They must be done completely on your own!

Note: Be aware that assignments are part of the examination of the course and
they should be done individually!

Standard procedure will be followed if very similar solutions are detected.

March 20th 2017, Lecture 1 TMV027/DIT321 27/34

Submission of Assignments

How? Via the Fire system, check course web page on Assignments.

Deadline account: Create an account in Fire on Tuesday 28th March at
the latest!

Who? All students registered or re-registered in the course and who
have NOT passed them yet!

When? See deadlines on course web page on Assignments.

March 20th 2017, Lecture 1 TMV027/DIT321 28/34

Course Evaluation

I need 4-5 student representatives from both Chalmers and GU on
Thursday at the latest.

Otherwise, we will pick randomly.

First meeting on first week of April.

March 20th 2017, Lecture 1 TMV027/DIT321 29/34

Comments and Advices from Course Evaluation

Tell people even more how much it really is to take in, and how extremely important it is
to be in phase.

Go to the exercise classes and the consultation times. It made it all more clear and I
actually didn’t have to put in much extra work.

I also liked that there weren’t any answers to the exercises; though scary at the

beginning, it gave a deeper understanding of the subject of the exercise when one had to

think twice and trust one’s own solution. It was also a great practice for the exam and

future employment.

March 20th 2017, Lecture 1 TMV027/DIT321 30/34

Comments and Advices from Course Evaluation (Cont.)

The assignments were really great and probably the main reason why I liked this course
so much. Also, the feedback from the assignments were absolutely great. Really
fantastic feedback, very very useful.

The assignments were extremely helpful and most probably the reason on why I passed
this course exam.

A high tempo of assignments kept me on my toes and made it clear what I had
learned/needed to practice on.

I know the assignements might seem a bit difficult; what’s with the whole ”no working

together, no help and no re-do’s” but it’s really not that bad. Especailly if you go to the

exercises. Seriously, go to the exercises.

March 20th 2017, Lecture 1 TMV027/DIT321 31/34

Changes from Last Year

Not many changes, quite an stable course by now...

New:

Individual help sessions;

Added some time on inductive proofs;

Automata tutor (send me feedback of you try it!).

March 20th 2017, Lecture 1 TMV027/DIT321 32/34

Overview of this Week

Mon 20 Tue 21 Wed 22 Thu 23 Fri 24

Lec 10-12 HB3
Recap logic,
sets, relations
and functions.

Ex 10-12 HC3
Recap exer-
cises.

Lec 13-15 HB3
Overview and
organistion.

Lec 13-15 HB3
Formal proofs.
Ind over N.
Inductive sets.

Lec 13-15 HB3
Structural ind.
Concepts of
automa theory.

March 20th 2017, Lecture 1 TMV027/DIT321 33/34

Overview of Next Lecture

See chapters 3 and 4 in the Mathematics for Computer Science book
(or relevant chapters in other text on discrete math).

Recap on:

Logic;

Sets;

Relations;

Functions.

March 20th 2017, Lecture 1 TMV027/DIT321 34/34

