On the definition of the $\hat{\delta}$ function

We write q.a instead of $\delta(q, a)$ and q.x instead of $\hat{\delta}(q, x)$.

The text book presents the following recursive definition

(1)
$$q.\epsilon = q$$
 $q.(xa) = \delta(q.x,a)$

We presented the definition

(2)
$$q.\epsilon = q$$
 $q.(ax) = \delta(q,a).x$

The goal of this note is to explain why the definitions are equivalent.

Analysis of the definition (1)

We are going to prove from (1)

$$q.(xy) = (q.x).y$$

by *induction on y*. We write $\psi(y)$ for q(xy) = (qx)y and we prove

$$rac{\psi(y)}{\psi(\epsilon)} = rac{\psi(y)}{\psi(ya)}$$

Indeed $\psi(\epsilon)$ is

$$q.(x\epsilon) = q.x = (q.x).\epsilon$$

and if we assume $\psi(y)$ that is q.(xy) = (q.x).y we have

$$q.(x(ya)) = q.((xy)a) = (q.(xy)).a = ((q.x).y).a = (q.x).(ya)$$

which is $\psi(ya)$.

Analysis of the definition (2)

We are going to prove from (1)

$$\forall q. \quad q.(xy) = (q.x).y$$

by induction on x. We write $\phi(x)$ for $\forall q$. q.(xy) = (q.x).y and we prove

$$rac{\phi(x)}{\psi(\epsilon)} \qquad rac{\phi(x)}{\phi(ax)}$$

Indeed $\psi(\epsilon)$ is

$$\forall q. \quad q.(x\epsilon) = q.x = (q.x).\epsilon$$

and if we assume $\phi(x)$ that is $\forall q$. $q(xy) = (qx) \cdot y$ we have

$$\forall q. \quad q.((ax)y) = q.(a.(xy)) = (q.a).(xy) = ((q.a).x).y = (q.(ax)).y$$

which is $\phi(ax)$.

Notice that in this proof using the definition (2) we need to quantify over all states

Conclusion

We have show that the definition (1) satisfies $q.\epsilon = q$ and q.(xy) = (q.x).y. In particular it satisfies q.(ax) = (q.a).x.

Thus if we consider the two functions $f_1(q, x) = q \cdot x$ following the recursion (1) and $f_2(q, x) = q \cdot x$ following the recursion (2), both functions satisfy the same recursive equations

$$f_1(q,\epsilon) = f_2(q,\epsilon) = q$$
 $f_1(q,ax) = f_1(q.a,x)$ $f_2(q,ax) = f_2(q.a,x)$

For f_2 it is by definition, and for f_1 it is by what we have just proved.

It follows from this that we have by induction on x

$$f_1(q,x) = f_2(q,x)$$

so the two definitions are equivalent.