
Finite Automata and Formal Languages
TMV026/DIT321

Thursday 27th of May 2010

CTH: Total 60 points: ≥ 26: 3, ≥ 38: 4, ≥50: 5
GU: Total 60 points ≥26: G, ≥42: VG

No help material.

Answers can be written in English or Swedish. Write as clear as possible.

All answers should be well motivated. Points will be deduced when you give an
unnecessarily complicated solution or when you do not properly justify your answer.

1. (6pts) Consider the following context-free grammar with start symbol S:

S → 0S1S | 1S0S | ε

Prove using induction that if w ∈ {0, 1}∗ and S ⇒∗ w then w has the same number of 0’s
than of 1’s.

(Example: the word 01101 has 2 0’s and 3 1’s.)

2. (3pts) Define a deterministic finite automata accepting the language over {0, 1} not contain-
ing the strings with at least 3 consecutive 0’s.

3. (6pts) Minimise the following automaton.

a b
→ q0 q3 q5
q1 q6 q3
q2 q6 q4
q3 q6 q6
∗q4 q0 q5
∗q5 q2 q4
q6 q1 q6

Show the table that identifies the distinguishable states and justify the construction of the
automaton.

1

4. (a) (4pts) Convert the following non-deterministic finite automata to an equivalent deter-
ministic finite automata.

a b
→ q0 {q0, q1} {q2}
q1 {q3, q4} {q1, q2}
q2 {q1, q2} {q3, q4}
∗q3 {q3} {q4}
∗q4 {q4} {q3}

(b) (2.5pts) Describe with words the language accepted by the deterministic finite automata
you constructed.

(c) (2.5pts) Give a regular expression which generates the language you described in ??).

5. Do these two regular expressions represent the same language? Justify your answer.

(a) (2.5pts) (a+ b)∗ and (a∗b∗)∗?
(b) (2.5pts) a∗(a+ b)∗ and (a+ b)∗?

6. (5pts) Which of the following languages are regular? Give a regular expression or use the
Pumping lemma for regular languages to justify your answer.

(a) L = {bna3m | n > 0,m > 0}
(b) L = {anb3n | n > 0}

7. Give examples of languages L1 and L2 such that

(a) (2.5pts) L1 is regular, L2 is not regular and L1 − L2 is regular.
(b) (2.5pts) L1 and L2 are not regular but L1 ∪ L2 is regular.

8. (a) (5pts) Give a context-free grammar that generates the language
{aibjck | i, j, k > 0, (i > k or i < j)}. Explain your grammar!

(b) (2pts) Is the grammar ambiguous? Justify.

9. Consider the following context-free grammar with starting symbol S:

S → aSb | aSbb | ab | abb

(a) (2pts) Describe informally the language generated by the grammar.
(b) (2pts) Is the grammar ambiguous? Justify.
(c) (2pts) Convert the grammar to an equivalent grammar in Chomsky Normal Form.
(d) (4pts) Apply the CYK algorithm to see if the word aabbb belongs to the language gen-

erated by the grammar. Show the table and justify your answer.

10. (4pts) Define formally what a Turing machine is. Describe informally how it works.

2

Exam Solutions

In the exam, you need to explain a bit more your solutions.

1. We will use course of value induction on the length of the derivation (number of steps).

Base case: Length of the derivation is 1. Then S ⇒ w. Then w = ε which obviously has the
same number of 0’s than of 1’s.

Inductive step: Length of the derivation is n+ 1. Our inductive hypothesis is that any word
w′ derived from S in at most n steps has the same number of 0’s than of 1’s.

We have 2 cases depending on the first step in the derivation:

• S ⇒ 0S1S ⇒∗ w. Then w = 0u1v such that S ⇒∗ u and S ⇒∗ v. In addition, the
derivations for u and v take at most n steps.
The number of 0’s in w is 1 + the number of 0’s in u + the number of 0’ in v. The
number of 1’s in w is 1 + the number of 1’s in u + the number of 1’s in v.
By inductive hypothesis we know that the number of 0’s in u and in v are the same as
the number of 1’s in u and in v respectively.
Then we know that the number of 0’s in w is the same as the number of 1’s in w.

• S ⇒ 1S0S ⇒∗ w. Then w = 1u0v such that S ⇒∗ u and S ⇒∗ v. In addition, the
derivations for u and v take at most n steps.
The rest is similar to the case above.

2.
0 1

→∗ q0 q1 q0
∗q1 q2 q0
∗q2 q3 q0
q3 q3 q3

3. First we need to run the algorithm that identifies equivalent states.

q0 q1 q2 q3 q4 q5
q6 X X X X
q5 X X X X
q4 X X X X
q3 X X
q2 X
q1 X

Help distinguishing states:
(q0, q1)→b (q5, q3)
(q0, q3)→b (q5, q6)
(q0, q6)→b (q5, q6)
(q1, q2)→b (q3, q4)

3

(q2, q3)→b (q4, q6)
(q2, q6)→b (q4, q6)

Show the equivalences:
(q1, q6)→a (q6, q6)
(q1, q6)→b (q3, q6)

(q3, q6)→a (q6, q1)
(q3, q6)→b (q6, q6)

(q4, q5)→a (q0, q2)
(q4, q5)→b (q5, q4)

(q0, q2)→a (q3, q6)
(q0, q2)→b (q5, q4)

(q1, q3)→a (q6, q6)
(q1, q3)→b (q3, q6)

The resulting automaton is (remember that equivalence of states is transitive):

a b
→ q0q2 q1q3q6 q4q5
q1q3q6 q1q3q6 q1q3q6
∗q4q5 q0q2 q4q5

4. (a)
a b

→ q0 q0q1 q2
q0q1 q0q1q3q4 q1q2
q2 q1q2 q3q4

q1q2 q1q2q3q4 q1q2q3q4
∗q0q1q3q4 q0q1q3q4 q1q2q3q4
∗q1q2q3q4 q1q2q3q4 q1q2q3q4

∗q3q4 q3q4 q3q4

(b) The language consists of any string containing at least 2 a’s or 2 b’s.

(c) a(a+ b)∗a(a+ b)∗ + b(a+ b)∗b(a+ b)∗

5. (a) Yes.
Words of the form (a+ b)∗ can be generated by (a∗b∗)∗ by taking just one a and the ε
or ε and one b in each iteration.
Words of the form (a∗b∗)∗ can be generated by (a+ b)∗ by generating as many a’s and
then as many b’s as necessary for each sequence of a’s followed by the sequence of b’s.

4

(b) Yes.
Words of the form a∗(a+ b)∗ can be generated by (a+ b)∗ by first generating as many
a’s as needed and the generating the a’s and the b’s each at a time.
Words of the form (a+ b)∗ are an especial case of words of the form a∗(a+ b)∗, where
we take ε for a∗.

6. (a) The regular expression is b∗(aaa)∗.

(b) The language is not regular. With the n of the Pumping lemma we give the word anb3n.
Then y should contain only a’s. Eventually xykz will contain more a’s than b’s (at least
for k > 3n/m with |y| = m).

7. (a) L1 = a∗ and L2 = {bncn | n > 0}. Here L1 − L2 = L1.

(b) L1 = {aibj | i 6 j} and L2 = {aibj | i > j}. Here L1 ∪ L2 = a∗b∗.

8. (a)
S → P | Q
A→ a | aA
B → b | bB
C → c | cC
P → aPc | aABc
Q→ RC
R→ aRb | aBb

• S is the start symbols of the grammar: P generates the part aibjck with i > k, and
Q generates the part aibjck with i < j

• A generates 1 or more a’s
• B generates 1 or more b’s
• C generates 1 or more c’s
• P generates aibjck such that i > k
aPc generates equal amount of a’s and c’s. When we are done adding c’s. aABc
adds as many a’s as we want (at least one) and all the b’s as well.

• R generates aibj such that i < j.
aRb generates as many a’s as b’s, aBb adds all the extra b’s (at least one).

• Q generates aibjck such that i < j by using R and adding all the c’s with C.

(b) Yes, the words aabbbc has the following 2 left-most derivations:

• S ⇒ P ⇒ aABc⇒ aaBC ⇒ aabBc⇒ aabbBc⇒ aabbbc

• S ⇒ Q⇒ RC ⇒ aRbC ⇒ aaBbbC ⇒ aabbbC ⇒ aabbbc

9. (a) The words are of the form aibj with 0 < i 6 j 6 2i.

(b) Yes, the word aabbb has the following 2 left-most derivations:

• S ⇒ aSb⇒ aabbb

• S ⇒ aSbb⇒ aabbb

5

(c)
S → AP | AQ | AB | AC
P → SB Q→ SC
A→ a B → b
C → BB

(d)
{S, P}
{S} {Q,P}
∅ {S, P} ∅
∅ {S} {C} {C}
{A} {A} {B} {B} {B}
a a b b b

S belongs to the upper-most set, which means that the word is generated by the gram-
mar since S is the starting symbol of the grammar.

10. See slides 3 to 7 in lecture 14.

6

