
1

Exercise 1, Algorithms, Autumn 2017
General reference: Chapter 2 and OH slides from lec. 2.
 How to determine non trivial order

To find out if a certain function t is O(f) you look at
t n
f n

when n ∞ and see if the quotient

is ≤ c. Ex: Is 3n3 + 2n2 = O(n3)?

Since
3n32n

n3 3 when n ∞  the answer is yes. We can choose n0 = 1 and c = 5.

3n3 + 2n2 is also for instance O(n4)
 L’Hospitals rule can often be used for non trivial functions

Look at the quotient t(n)/f(n). If f(n) and t(n)  ∞ or 0 (∞/∞ or 0/0) when n ∞ and the 

derivative exists and f ' x ≠0 then it is true that lim
n  ∞

t n
f n

= lim
n  ∞

t ' n
f ' n

.

Ex: Show that logn2 ∈O n .

lim
n  ∞

logn2

n = lim
n  ∞

logne ⋅ loge2

n = lim
n  ∞

1
n ⋅ loge2

1
=0

c should be >0. Since limes gives us a limit we have shown that logn ∈ O(n).

 1. Is it true that n0,001∈O  logn ?

 2. Simple substitution
Is loglogn = O((logn)2)? Perhaps not that easy to see.
Substitute n for logn and you get the question is logn = O(n2) which is trivial.
(We really substitute 2n for n)

 3. Blackboard: be careful with O(f) + O(g) = O(f+g) = O(max(f, g))
Some thought is necessarily when using these rules of ordo notation.

∑
i =1

n

i =1+2+3+ ...+n ∈O (1+2+3+...+n )≠O (max (1,2,3,. .. , n ))=O (n )

 Right answer is O(???).

 4. Often people write bounds like O(logn) without indicating the base of the logarithm. This is not 
sloppy usage; it is based on the fact that for any two bases a > 1 and b > 1, the function
logna ∈O  lognb  . Prove this fact.



2

 5. Determine worst case complexity (preferably by formulating and solving sums):

     a)
for (i=0; i<n; i++) {

sum = sum + a[i];
}

     b)
for (i=0; i<n; i++) {

for (j=0; j<n; j++) {
sum = sum + a[j];

}
}

     c)
for (i=0; i<n; i++) {

if (odd(i)) {
for (j=0; j<n; j++) {

sum = sum + a[j];
}

} else {
sum = sum + a[i];

}
}

     d)
for (i=0; i<n; i++) {

for (j=i; j<n; j++) {
sum = sum + a[j];

}
}

 6. In the end you have the code of the sorting method selectionsort. Analyse it's complexity.

 7. Recurrence equations
A recurrence is when a function is defined in terms of itself, for instance
T(n) = T(n-1) + 2, T(1) = 2
or
T(n) = {if n=1 then c else T(n-1) + c2}
These are useful for computing the complexity of recursive functions. In that case the function 
T(n) corresponds to the “time” spent in the function, T(n-1) is the cost of the recursive call, and 
T(0) is the base case. There are many different techniques for solving these, use expansion.

 8. Solve T(n) = {if n=1 then c else 2T(n/2) + c2n}

 9. Formulate and solve two (different) recursion equations for the maximum number of nodes in a 
binary tree of height h. Can you prove your results with induction?

 10. Solve the following recursion equation, T(1)=1, T(n) = T(n-1) + 2(n-1) + c

 11. (more difficult)
Solve the following recursion equation, T(1)=1, T(n) = 2T(n/2) + nlogn



3

 12. 3 excercises from Chapter 2 in Algorithm design from Kleinberg, Tardos page 67-68
Ex 1 p 67 (how much slower)
Ex 3 p 67 (arrange in ascending order)
Ex 6 p 68 (complexity of triple loop)

Ex 1: Suppose you have algorithms with the six running times listed below. (Assume these are the 
exact running times.) How much slower do each of these algorithms get when you (a) double the 
input size, or (b) increase the input size by one?

(i) n2      (ii) n3      (iii) 100n2    (iv) logn     (v) n log n     (vi) 2n   

Ex 3: Take the following list of functions and arrange them in ascending order of growth rate.
That is, if function g(n) immediately follows function f(n) in your list, then it should
be the case that f(n) is O(g(n)).
f1 n=n2.5 , f2 n=2n , f3 n=n10, f4 n=10n , f5 n=100n , f6 n=n2 logn

Ex  6  Consider the following basic problem. You're given an array A consisting of n integers A[1],
A[2], ..., A[n]. You'd like to output a two-dimensional n-by-n array B in which B[i; j] (for i < j) 
contains the sum of array entries A[i] through A[j] - that is, the sum A[i] + A[i + 1] + ... + A[j]. 
(The value of array entry B[i; j] is left unspecified whenever i ≥ j, so it doesn't matter what is 
output for these values.)
Here's a simple algorithm to solve this problem.

For i = 1, 2, ..., n
For j = i + 1, i + 2, ..., n

Add up array entries A[i] through A[j]
Store the result in B[i; j]

Endfor
Endfor

(a) For some function f that you should choose, give a bound of the form O(f(n)) on the running 
time of this algorithm on an input of size n. (I.e. a bound on the number of operations performed by 
the algorithm.)
(b) For this same function f, show that the running time of the algorithm on an input of size n is also
Ω(f(n)). (This shows an asymptotically tight bound of Ө(f(n)) on the running time.)
(c) Although the algorithm you analyzed in parts (a) and (b) is the most natural way to solve the
problem - after all, it just iterates through the relevant entries of the array B, filling in a value for 
each - it contains some highly unnecessary sources of inefficiency. Give a different algorithm to 
solve this problem, with an asymptotically better running time. In other words, you should design 
an algorithm with running time O(g(n)), where lim

n  ∞

g n/ f n=0

 13. Algorithms on the web: (Do this when you are at your computer)
The web contains thousands and thousands of links to material about algorithms. Find some 
non-trivial algorithm that solves an interesting problem and give a short description of the 
algorithm and the problem it’s solving. State your source (the web address)
How do you determine that a site is trustworthy i.e. that the content is true and not just made
up by someone?
Which search words gives good algorithm hits?



4

 14.  Logarithm laws that you need to know (all are not individual laws)

y =a x ⇒ x = logya = logyb

logab = logba ⋅ logyb logba =
1

logab

a lognb

=n logab

logaa =1, log1a =0

log a x =x⋅log a in particular loga a x =x

log (x⋅y )= logx + log y log x
y = logx − logy

a x⋅a y =a x + y a x⋅b x =(a⋅b )x

(a x )y =a x ⋅y in particular (22)i =22i=(2i )2

Most of the sums you need to know. give the growth rate on the following sums by solving them
(or estimating if it's hard to solve).

a) ∑
i =1

n

1 b) ∑
i =1

n

i c) ∑
i =1

n

i 2 d) ∑
i =1

n

i k

e) ∑
i =0

n

a⋅x i f) ∑
i =0

n

2i g) ∑
i = 0

n

i ⋅x i h) ∑
i =0

n

i ⋅2i

i) ∑
i =1

n 1
i

j) ∑
i =2

n

logi k) ∑
i =2

n

i ⋅logi
l)

∑
i=k

p
1 = p−k+1

 15. Some more sum formulas that are good to know

∑
i

c ⋅i =c⋅∑
i

i ∑
i = c

n

i = ∑
i =0

n − c

i +c ∑
i =1

n

(a i +b i )=  

∑
i =1

n

a i +∑
i =1

n

b i

∑
i =0

n

(n − i )=∑
i =0

n

i

 16. Fill in the table

T(n/2) + c       ∈ 

T(n/2) + clogn  ∈ 

T(n/2) + cn     ∈ 

T(n/2) + n2      ∈ 

2T(n/2) + c      ∈ 

2T(n/2) + clogn ∈ 

2T(n/2) + cn    ∈ 

T(n-1) + c       ∈ 

T(n-1) + clogn  ∈ 

T(n-1) + cn      ∈ 

T(n-1) + cnlogn ∈ 

2T(n-1) + c      ∈ 

2T(n/2) + cnlogn ∈ 



5

Selectionsort
st void swap(int[] f), int x, int y {

int tmp = f[x];
f[x] = f[y];
f[y] = tmp;

}
1. st void selectionSort(int[] f) {
2. int lowIndex = 0;
3. for (int slot2fill = 0;
4. slot2fill < f.length-1;
5. slot2fill++) {

//slot2fill står i tur att ordnas
6. lowIndex = slot2fill; // minst
7. for (int j = slot2fill+1;
8. j < f.length;
9. j++) {
10. if (f[j]<f[lowIndex]){
11. lowIndex = j;

}
}

12. if (lowIndex != slot2fill) {
13. swap(lowIndex,slot2fill, f);

}
}

}      


