
Algorithms. Lecture Notes 8

Reductions between Problems

In general, any new problem requires a new algorithm. But often we can solve
a problem X using a known algorithm for a related problem Y . That is, we
can reduce X to Y in the following informal sense: A given instance x of X
is translated to a suitable instance y of Y , so that we can use the available
algorithm for Y . Eventually the result of this computation on y is translated
back, so that we get the desired result for x. This sounds very abstract? Here
we illustrate the idea, over a cup of tea:

“Problem Y : How does a mathematician prepare tea? Answer: He
applies an algorithm: Pour water in the boiler, heat up, take tea
leaves, cup and sieve, ... (We skip the remaining details. You cer-
tainly know the algorithm.)

Problem X: How does the mathematician prepare tea if there is al-
ready water in the boiler? Answer: He would pour out the water.
This way he has reduced problem X to problem Y .”

Now we give a more serious (but still a bit artificial) example of a reduction.
Suppose we want an algorithm for multiplying two integers, and there is already
an efficient algorithm available that can compute the square of an integer. It
needs S(n) time for an integer of n digits. Can we somehow use it to multiply
arbitrary integers a, b efficiently, without developing a multiplication algorithm?
Certainly squaring and multiplication are related problems. More precisely, we
can use the identity ab = ((a + b)2 − (a − b)2)/4. We only have to add and
subtract the factors in O(n) time, apply our squaring algorithm in S(n) time,
and divide the result by 4, which can be easily done in O(n) time, since the
divisor is a constant. Thus we have reduced multiplication (problem X) to
squaring (problem Y) as follows. We have taken an instance of X (factors a, b),
transformed it quickly into some instances of Y (namely a+ b and a− b), solved
these instances of Y by the given squaring algorithm, and finally applied another
fast manipulation on the results (addition, division by 4) to get the solution ab
to the instance of problem X.

It is essential that not only a fast algorithm for Y is available, but the
transformations are fast as well. Note that the time for our multiplication

1

algorithm is O(S(n)). The O(n) time transformations are already counted in
this time bound, as S(n) is certainly not faster than O(n).

Doing multiplication through an algorithm specialized to squaring is, of
course, somewhat strange. But still we get an interesting insight from this
reduction: One might conjecture that squares can be computed faster than
products of arbitrary numbers, since this problem is only a very special case
of multiplication. But due to our reduction, these hopes come to nothing, and
we can give firmly a negative answer: Any faster algorithm for squaring would
immediately yield a faster algorithm for (general) multiplication. Thus squaring
is not easier than multiplication.

We have identified two different purposes of reductions: (1) Solving a prob-
lem X with help of an already existing algorithm for a different problem Y . (2)
Showing that a problem Y is at least as difficult as another problem X.

Note that (1) is of immediate practical value, and even usual business:
Ready-to-use implementations of standard algorithms exist in software pack-
ages and algorithm libraries. One can just apply them as black boxes, using
their interfaces only, without caring about their internal details. This is noth-
ing but a reduction! Point (2) gives us a way to classify problems by their
algorithmic complexity. We can compare the difficulty of two problems without
knowing their “absolute” time complexity. If Y is at least as difficult as X, then
research on improved algorithms should first concentrate on problem X.

Reductions – Now More Formally

After this informal introduction we approach the abstract definitions of reduc-
tions that are needed to build up a complexity theory of computational prob-
lems.

Let X,Y be any two problems. By |x| we denote the length of an instance
x of problem X. We say that X is reducible to Y in t(n) time, if we can do
the following in t(n) time for any given x with |x| = n: Transform x into an
instance y = f(x) of problem Y , and transform the solution of y back into a
solution for x.

Symbol f merely denotes the function describing how an instance is trans-
formed. f must be computable in t(n) time. Note that the time needed by
the algorithm for problem Y is not counted in t(n). Only the transformations
of instances and solutions are charged. These are the extra costs for using the
algorithm for Y , so to speak. Assuming that we have an algorithm for problem
Y with time bound u(n), we can solve an instance x of problem X in time
t(|x|) + u(|f(x)|).

Loosely speaking we can conclude: If Y is an easy problem and the reduction
is fast, then X is an easy problem, too. Conversely, if X is a hard problem, and
we have a fast reduction to problem Y , then Y is a hard problem, too. In this
sense, a reduction allows a comparison of the difficulty of two problems.

2

These comparisons become much easier to handle formally when we restrict
attention to so-called decision problems. A decision probem is simply a prob-
lem that takes an input and has to output a Yes or No answer. (The instance
has a solution or not.) This is not a severe restriction. Every optimization prob-
lem can be viewed as a series of decision problems. Instead of asking “give me a
solution where the objective value is minimized” we can ask “does there exist a
solution with objective value at most t?”, for various thresholds t. Informally, if
the optimization problem is easy to solve, then the corresponding decision prob-
lem is also easy, for every threshold t. (We just compare an optimal solution to
the threshold.) By contraposition, if already the decision problem is hard, then
the corresponding optimization problem is also hard.

Now we define a special type of reductions for decision problems X,Y : We
say that X is reducible to Y in t(n) time, if we can compute in t(n) time, for
any given x with |x| = n, an instance y = f(x) of Y such that the answer to
x is Yes if and only if the answer to y is Yes. (Loosely speaking, instances x, y
of the decision problems X,Y are equivalent.) If the time t(n) needed for the
reduction is bounded by a polynomial in n, we say that X is polynomial-time
reducible to Y .

Problem: Clique

A clique in a graph G = (V,E) is a subset K ⊆ V of nodes such that all
possible edges in K exist, i.e., there is an edge between any two nodes in K.

Given: an undirected graph G.

Goal: Find a clique of maximum size in G.

Motivations:
This is a fundamental optimization problem in graphs. Many other problems

can be rephrased as a Clique problem. A setting where it appears directly is
the following: The graph models an interaction network (persons in a social
network, proteins in a living cell, etc.), where an edge means some close relation
between two “nodes”. We may wish to identify big groups of pairwise interacting
“nodes”, because such groups may have an important role in the network.

Problem: Independent Set

An independent set in a graph G = (V,E) is a subset I ⊆ V of nodes such
that no edges in I exist.

Given: an undirected graph G.

3

Goal: Find an independent set of maximum size in G.

Motivations:
The same general remarks as for the Clique problem apply. A setting where

it appears directly is the following: The graph models conflicts between items,
and we wish to select as many as possible items conflict-free. For example:
Goods shall be packed in a box, but for security reasons certain goods must not
be packed together. How many can we put in the same box?

Problem: Vertex Cover

A vertex cover in a graph G = (V,E) is a subset C ⊆ V of nodes such that
every edge of G has at least one of its two nodes in C.

Given: an undirected graph G.

Goal: Find a vertex cover of minimum size in G.

Motivations:
Vertex covers are of interest in “facility location” problems. A toy example

is the question: How can we place a minimum number of guards in a museum
building so that they can watch all corridors?

Another application field is combinatorial inference. As a bioinformatics
example, consider some genetic disease that appears if some rare bad variant of a
certain gene is present. Geneticists want to figure out what the bad gene variants
are. Their number is expected to be small, as a result of a few unfortunate
mutations. Every person carries two copies of the gene. Given the genetic data
of a group of persons having the disease, we know that each person has at least
one bad variant in his/her pair of genes. Now we can try and explain the data
by a minimum number of different bad gene variants.

Reductions Between Some Graph Problems

We illustrate the definition of polynomial-time reducibility by some simple re-
ductions between the mentioned graph problems, reformulated as decision prob-
lems. Let G = (V,E) be an undirected graph. The Clique problem takes as
input a graph G and an integer k and asks whether G contains a clique of at
least k nodes. The Independent Set problem takes as input a graph G and an
integer k and asks whether G contains an independent set of at least k nodes.

Inuitively one feels that Clique and Independent Set are only different for-
mulations of the same problem. To make this precise, we show that Clique
and Independent Set are polynomial-time reducible to each other. A reduction
function is established by f(G, k) := (Ḡ, k), where Ḡ is the complement graph

4

of G, that is, the graph obtained by replacing all edges with non-edges and vice
versa. Regarding the formalities, note that f has to transform an instance of
a problem into an instance of the other problem, and an instance consists here
of a graph G and an integer k. The transformation is obviously manageable in
polynomial time.

The Vertex Cover problem takes as input a graph G and an integer k and
asks whether G contains a vertex cover of at most k nodes. We show that
Independent Set and Vertex Cover are polynomial-time reducible to each other.
The key observation is that C ⊆ V is a vertex cover if and only if V \ C is an
independent set. Vertex covers and independent sets are complementary sets
in the same graph. Hence, a vertex cover of size at most k exists if and only
if an independent set of size at least n − k exists (and similarly in the other
direction). This gives us a possible reduction: f(G, k) := (G,n− k). This time
we did not change the graph. The only work of the reduction function is to
replace the threshold k with n− k.

These very simple reductions show that all three problems are essentially
the same. In particular, they are equally hard.

If a problem X is merely a special case of problem Y , we immediately have a
reduction polynomial-time reduction from X to Y . To give an example, Interval
Scheduling is a special case of Independent Set, which is seen as follows: Given
a set of intervals, we construct a graph with the given intervals as nodes, where
two nodes are adjacent whenever the represented intervals are intersecting. We
call it the interval graph of the given set of intervals. The decision version of
Interval Scheduling is: Given a set of intervals and an integer k, does there exist
a subset of at least k disjoint intervals? The above graph construction is, in
fact, a polynomial-time reduction from Interval Scheduling to Independent Set.
The function f describing this reduction transforms the set of intervals into its
interval graph, while k is unchanged.

Complexity Classes and Hardness

Comparison by polynomial-time reducibility induces a partial ordering on the
class of decision problems, with respect to their complexities: This relation is
transitive, that is, if X is polynomial-time reducible to Y , and Y is polynomial-
time reducible to Z, then X is polynomial-time reducible to Z. This is almost
obvious, but we must be a bit careful with the time bounds. To prove tran-
sitivity, let f and g be the functions transforming the instances from X to Y
and from Y to Z, respectively. Let f and g be computable in time p and q,
respectively. By assumption, p and q are polynomials. In order to solve an
instance x of X (of size n) with help of an algorithm for Z, we can compute
instance g(f(x)) of Z and then run the available algorithm. The time needed
for the reduction is p(n) + q(p(n)). Note that we can bound the input length
|f(x)| in the second term only by p(n), since the transformation algorithm that

5

computes f(x) can use p(n) time, and it may use this time to generate such a
long instance. However, since p, q are polynomials, q(p(n)) is still polynomial in
n, hence the entire reduction from X to Z is polynomial.

The “bottom” of the mentioned partial ordering of problems by complexity
is the class of “easy” problems. We pointed out earlier that efficient algorithms
should need at most polynomial time. Accordingly, we define the complexity
class P as the class of decision problems that admit an algorithm which solves
every instance x (of size n) correctly and in O(p(n)) time, where p is some
polynomial. Note that p may depend on the problem, but not on n.

If a given problem is quickly reducible to an easy problem, then the given
problem is easy, too. Formally, if a decision problem X is polynomial-time
reducible to a decision problem Y ∈ P, then X ∈ P. The proof is similar to
the transitivity proof. Let p be the polynomial time bound for computing the
function f which reduces X to Y , and let t be the polynomial time bound of the
algorithm for problem Y . (Now we have to count in the time used by this target
algorithm.) Given an instance x of X, with |x| = n, we compute f(x) and solve
instance f(x) by the algorithm for Y . Now the time bound is p(n) + t(p(n)),
and this is polynomial in n.

The contraposition says: If X is polynomial-time reducible to Y , and X is
not in P, we can conclude that Y is not in P either! Thus, reductions allow
us to prove hardness of many problems, once we know some hard problem to
start with. But can we actually prove that some particular problem is not in
P? At least, many natural problems are suspected to be hard in this sense.
No polynomial-time algorithms are known for them. Many graph problems are
of this type, and also the Knapsack problem. (Remember that our dynamic
programming algorithm for Knapsack was not polynomial in the input length!)
They seem to resist all our techniques to create fast algorithms. One cannot see
how a correct solution to an instance can be built up from solutions to smaller
instances in an efficient way. You are welcome to try, but you will always get
stuck at some point. Maybe the methods we have learned are too weak for these
problems, or too much ingenuity is needed to find the right way of applying the
techniques. The question is: Are we not smart enough, or are the problems
intrinsically hard, i.e., outside the class P?

Before we outline the current knowledge around this question, we should
reflect upon this activity: Having a good algorithm for some problem is clearly
of practical value (provided that the problem is relevant), but why is it mean-
ingful to prove that some problem is hard? Well, such negative results have
practical value, too: We would know that searching for a fast and exact algo-
rithm is hopeless, and we would concentrate our efforts on fruitful workarounds,
like refined heuristics, algorithms for special cases, approximation algorithms,
etc. (Compare it to mechanics: For fundamental reasons, a perpetuum mobile
cannot exist, and this knowledge keeps us from wasting our time with hopeless
attempts to build one. Instead, we aim at realistic goals in engineering.) Besides
finding the limits of efficient computation, there even exist direct applications

6

of hardness: Some methods in cryptography rely on the fact that certain com-
putational problems are hard to solve, and these are used to build encryption
schemes that cannot be broken in reasonable time.

The Notion of NP-Completeness

Almost all “natural” algorithmic problems belong to a certain class of decision
problems that includes P but is apparently larger. Below we introduce this
larger complexity class.

It is common to our problems that we can easily verify (confirm, certify)
already given solutions. For example, consider the decision version of Knapsack:
Given n items, their weights and values, a capacity W , and a desired total value
t, the question is whether some subset of items with total weight no larger than
W has a total value of at least t. If somebody supplies us with a solution, we can
easily check in polynomial time whether this is in fact a solution: We simply have
to add and compare some numbers. Or consider the Independent Set problem:
Given a graph and a number k, we can check in polynomial time whether a
given subset I of nodes is a valid solution: Count the nodes in I, compare their
number to k, and verify for all nodes u, v ∈ I that u, v are not joined by an
edge. For virtually every natural decision problem we can similarly check an
already given solution in a short time. (Consider further problem examples on
your own, then you will see.)

The complexity class NP is defined as the class of decision problems which
admit an algorithm that verifies a given solution in polynomial time. To be pre-
cise, the condition is that we can verify the existence of a solution in polynomial
time, but we can neglect this subtle difference here.

Some comments on this definition are in order. The verification algorithms
are not supposed to solve the problems, at least, not in polynomial time. The
definition does not say how the solutions are obtained (exhaustive search, a
good guess, etc.). It is only concerned with the verification of already available
solutions. The abbreviatiom NP stands for nondeterministic polynomial,
which refers to the interpretation that we may have guessed a solution.

We have P ⊆ NP. Namely, if we can even solve a problem correctly in
polynomial time then, trivially, we can also verify in polynomial time that it
has a solution.

As said above, almost every natural, relevant computational problem belongs
to NP, and we have that P ⊆ NP. Is this inclusion strict?! It would be nice
to know P = NP, since this would mean that all these problems are solvable in
polynomial time. Unfortunately, the question is open. Moreover, this is perhaps
the most famous open question in Computer Science. Nevertheless we can shed
some light on this so-called P-NP question and classify certain problems as
“hard”. Recall that reductions can be used to compare the difficulty of problems.
Now comes the last central definition:

7

A decision problem Y ∈ NP is said to beNP-complete if every (!) problem
X ∈ NP is polynomial-time reducible to Y . Informally speaking, NP-complete
problems are the hardest problems in NP. We can characterize their hardness
as follows: No NP-complete problem belongs to P, unless P = NP. Assume
for contradiction that some Y ∈ P is NP-complete. Then, by definition, all
X ∈ NP are polynomial-time reducible to Y . But since Y ∈ P, this implies
X ∈ P for all X ∈ NP.

To summarize what we have shown: It is open whether P = NP or not, but
if not, then no polynomial-time algorithm can exist for NP-complete problems.
Since until now nobody could find a fast algorithm for any such problem despite
decades of intensive research, it is generally believed that P 6= NP, and hence
all NP-complete problems are really hard.
NP-completeness of any specific problems can be proved via reductions from

other such problems, due to the following theorem: If Y is NP-complete and
polynomial-time reducible to Z ∈ NP, then Z is also NP-complete. This
follows immediately from the definition and from transitivity of polynomial-
time reducibility.

Some Frequent Misconceptions

To prove NP-completeness of a problem Y , one must give a polynomial-time
reduction from a known NP-complete problem X, not a reduction from Y to
X. Remember that Y is harder than X (more precisely: at least as hard) and
not easier.

An explanation why the direction of reductions is often confused might be
a misconception around the word “reduction”. In every-day use, to “reduce”
something usually means to make it smaller, and this may be misunderstood
as “making the complexity smaller”, but here it is the other way round! The
word “transformation” would avoid this misunderstanding, but “reduction” is
the established term.

Furthermore notice that polynomial-time reducibility is not a symmetric
relation. If X is reducible to Y , this does in general not imply that Y is also
reducible to X. A reduction goes in only one direction, but inside a reduction
one must show equivalence of the instances, which involves two directions: (1)
If x is Yes then f(x) is Yes, and (2) if f(x) is Yes then x is Yes. Moreover, this
must hold true for every x, whereas not every instance y of Y is required to be
some f(x). In other words, function f is not necessarily surjective. All these
aspects are easy to confuse, but this is only a matter of carefully learning the
definitions.

Sometimes it is claimed in reports that NP means “not polynomial”, which
is complete nonsense. Finally, carefully distinshuish between “NP-problems”
(that is, problems inNP, which also includes P), and “NP-complete problems”.
Here, sloppy naming produces wrong statements.

8

